The procedural author creates not just a set of scenes but a world of narrative possibilities."
43. Manovich, The Language of New Media, 221-222.
44. Australia, Canada, Denmark, Finland, Norway, Poland, the United States, and Uruguay.
45. Henry Jenkins, "Games, the New Lively Art," in Handbook of Computer Game Studies, eds.

Why game theory? What functions does theory serve during a moment when a medium is undergoing rapid transformation, when it is still defining its aesthetics, its functions, and its audiences? What forms will give theory maximum impact? Does theory serve a different function when a medium is new than when a medium is well established?

If one looks at the emergence of film theory, the most important early work did not come from distant academic observers but, rather, from direct participants. It came from trade press reporters like the Moving Picture World's Epes Winthrop Sargent who documented cinema's evolving formal vocabulary and pushed the medium to achieve its full potential. Sargent's readers were filmmakers, distributors, and exhibitors, who made a direct impact on the kinds of films produced. Early Soviet film theory came from expert practitioners, such as Eisenstein, Vertov, Kuleshov, or Pudovkin, who wanted to record and share discoveries made through their own production practice and, in the case of Kuleshov, to train future professionals. It came from public intellectuals like Gilbert Seldes who wanted to spark a discussion about the aesthetic merits of contemporary popular culture and thus wrote for mass market magazines, not specialized academic journals. Theoretical abstraction and distanced observation came much later, once cinema was more fully established as a medium and had achieved some cultural
respectability. More specialized language emerged as cinema studies struggled for acceptance as a legitimate academic discipline. In the process, many now feel it sacrificed the potential for dialogue with media practitioners and consumers.

Game theory seems to be teetering on a threshold: many academics want to see game theory establish itself as a predominantly academic discipline, while others seek to broaden the conversation between game designers, consumers, journalists, and scholars. The opportunity exists for us to work together to produce new forms of knowledge about this emerging medium that will feed back into its ongoing development.

Writers such as Gill Branston and Thomas McLaughlin have made the case that academic theorizing is simply a subset of a much broader cultural practice, with many different sectors of society searching for meaningful generalizations or abstract maps to guide localized practices. Branston draws parallels between the productive labor of a car mechanic and the intellectual work of academic theorists: "Theory, always historically positioned, is inescapable in any considered practice. Our hypothetical car mechanic may find her work intolerable, and indeed replaceable, if it consists entirely of behaving like a competent machine. She will be using some sense of the whole engine to fix bolts successfully; she has to operate creatively with something close to theories—those buried traces of theories which we call assumptions or even, if more elaborated, definitions—of energy, combustion. Should she ever want to drive the car she will need maps."

Theory thus governs practice and practice in turn contributes to our theoretical understanding. McLaughlin writes, "Practitioners of a given craft or skill develop a picture of their practice—a sense of how it is or ought to be practiced, of its values and its worldview—and many are quite articulate about this 'theory,' aware for example that there are competing theories, that not all practitioners work from the same premises. These practitioners' theories may contrast sharply with the theories of their practice constructed by academic theorists. . . . It would be possible to find the nurse's theory of disease, the musician's theory of audience, the computer designer's theory of interpretation, the athlete's theory of sport, the bookstore designer's theory of reading, the casting director's theory of character." Or, one might add, a game designer or game player's theory of games. Theoretical terms are most often articulated by expert practitioners, McLaughlin argues, during moments of transition or disruption, when existing language prove inadequate to changing situations, common wisdom has not yet been established, competing models demand adjudication, contemporary developments demand new vocabularies, or the practice comes under fire from the outside and has to justify its own assumptions. We ascribe theoretical insights to avant-garde artists, for example, when they push their media in new directions or provide aesthetic rationales for their work. Yet, when a medium is sufficiently new, all works produced are in a sense avant-garde—they are mapping still unfamiliar terrain, requiring a heightened consciousness about the medium itself.

McLaughlin's formulation would suggest, then, that as game designers develop their genre and formal vocabulary, expand their audience, introduce new production processes, or contend with governmental and policy challenges, this "vernacular theory" production will play a central role in their lives. Expert practitioners, such as Eric Zimmerman, Brenda Laurel, Doug Church, Will Wright, Peter Molyneux, and Warren Spector, among many others, have made significant contributions to our early understanding of this emerging medium. Professional conferences, such as the Game Developers Conference, have been at least as important academic conferences in formulating and debating game theory, if not more so. And the gamer community also has been actively and publicly involved in making sense of the medium, its audience, and its impact.

The Games to Teach Project represents a new phase in our efforts to involve in public debates about games and game theory over the past several years. We hosted one of the first conferences to bring together academic theorists with game design professionals to talk about the current state and future development of the medium. We have conducted workshops at E3, GDC, and other major industry gatherings, demonstrating how a broader humanistic knowledge of media might enhance game design. Many of our faculty members have participated in a series of workshops with some of the top "creatives" at Electronic Arts, examining such core questions as genre, narrative, character, emotion, and community. We also have been involved in public policy debates, testifying before governmental bodies, speaking to citizens, educators, parents, and reporters. We are motivated by a commitment to applied humanism—that is, the effort to mobilize theories, concepts, and frameworks from the humanities to respond pragmatically to real world developments during a period of media in transition.

The Games to Teach Project represents a new phase in our efforts to provoke discussion between game designers, players, policy makers, and scholars. A collaboration between the MIT Comparative Media Studies Program and Microsoft Research, the project seeks to encourage greater public awareness of the pedagogical potentials of games by developing a range of conceptual frameworks that show in practical terms how games might be deployed to teach math, science, and engineering at an advanced secondary or early undergraduate level. Much of the existing work in "edutainment" has focused on the primary grades. We feel games can also be used to communicate more complex content aimed at older players, who now constitute the core gamer market. Our research has showed that incoming students
at MIT are more apt to turn to games for their entertainment than film, television, or recreational reading; many respondents expressed enthusiasm for the idea of mastering classroom content through gaming. Our group starts from the assumption that educational games need to be inserted into larger learning contexts, not operate in a vacuum. Games can no more turn kids into scientists and engineers than they can make kids psycho killers; our task is to identify what things games do well, and how educators can leverage existing game genres and technologies.

Science and engineering faculty have long utilized digital models, simulations, and visualizations as teaching aids. There is an all-or-nothing quality to visualizations and lecture-style materials, however. Rather than presenting an explanation for a phenomenon (or a canonical illustration of "how things work"), games present players microworlds; games offer players (students) a contexts for thinking through problems, making their own actions part of the solution, building on their intuitive sense of their role in the game world. A gamer, confronting a challenging level, finds personal satisfaction in success—and personal motivation as well, rehearsing alternative approaches, working through complex challenges (often well into the night!). Many parents wish that they could get their children to devote this determination to solving their problem sets—it is an open question, however, whether simply working toward a better grade is an effective educational challenge. Games confront players with limits of space, time, and resources, forcing them to stretch in order to respond to problems just on the outer limits of their current mastery. The best games can adjust to the skills of their players, allowing the same product to meet the needs of a novice and a more advanced student. Indeed, the concept of advancing in "levels" structures the learning process such that players can't advance without mastery—something that curriculum- and test-designers have struggled to build into their work.

And games can enable multiple learning styles: for example, arts students might better grasp basic physics and engineering principles in the context of an architectural design program. Many of us whose eyes glaze over when confronted with equations on a blackboard find we can learn science more thoroughly when it builds on our intuitive understandings and direct observations, yet many important aspects of the physical world cannot be directly experienced in the classroom. Students often complain that they see few real-world applications for what they learn in advanced math and science classes, yet they might draw more fully on such knowledge if it was the key to solving puzzles or overcoming obstacles in a game environment—if the knowledge were a tool rather than an end. It is both a motivational distinction and a matter of mindset (and what is the object of teaching if not literally to change one's mind?).

The question for educators, then, is not whether games could someday work to teach students; they already do. The question is how to help these two worlds, that of gaming and that of education, to work together.

By design, our conceptual frameworks constitute thought experiments that seek to address core questions in game theory, pointing toward directions still largely unexplored by the mainstream industry. One could draw an analogy between these thought experiments and the early work of the Kuleshov group. For more than a year, Kuleshov taught his students at the VGIK school how to make movies without having any access to film stock; they conceptualized movies, blocked movies, imagined ways of dividing the action into shots, and even reedited existing movies, trying to develop a better understanding of how cinema operates. Kuleshov's experiments and insights have, however, guided decades of filmmakers as they sought to master the building blocks of film language. Similarly, our students are working through games on paper, examining existing games, brainstorming about future directions, and through this process, trying to address central issues surrounding games and education. As we developed these prototypes, we consulted with game designers, educational technologists, and the scientists and engineers most invested in the content areas, using them as a catalyst to get feedback and insight from practitioners.

We see these design documents as a form of game theory, one that starts with broad conceptual questions but addresses them through concrete examples. In the process of developing these frameworks, we have developed a much firmer grasp of the core challenges and opportunities that will shape the emergence of an educational games market. Operating within

Games model not only principles but processes, particularly the dynamics of complex systems; students develop their own languages for illustrating those systems and grow incredibly adept at explaining them in their own terms. Researchers have found that peer-to-peer teaching reinforces mastery; why, then, do we dismiss such information exchange in the context of gameplay (a website devoted to strategies for a particular game, or picking apart the rules of a simulation to ensure maximum efficiency) as somehow intellectually illegitimate? Such interactions are a critical part of the gaming context, and in the case of educational games, perhaps the most pedagogically important interactions.

Games also may enable teachers to observe their students' problem-solving strategies in action and to assess their performance in the context of authentic and emotionally compelling problems. Teachers may stage a particularly difficult level during a lecture, comparing notes on possible solutions. And the gaming world represents a rich model for sharable content, putting authoring tools into the hands of consumers and establishing infrastructures for them to exchange the new content they have developed. The question for educators, then, is not whether games could someday work to teach students; they already do so. The question is how to help these two worlds, that of gaming and that of education, to work together.

Our group at MIT are more apt to turn to games for their entertainment than film, television, or recreational reading; many respondents expressed enthusiasm for the idea of mastering classroom content through gaming. Our group starts from the assumption that educational games need to be inserted into larger learning contexts, not operate in a vacuum. Games can no more turn kids into scientists and engineers than they can make kids psycho killers; our task is to identify what things games do well, and how educators can leverage existing game genres and technologies.

Science and engineering faculty have long utilized digital models, simulations, and visualizations as teaching aids. There is an all-or-nothing quality to visualizations and lecture-style materials, however. Rather than presenting an explanation for a phenomenon (or a canonical illustration of "how things work"), games present players microworlds; games offer players (students) a contexts for thinking through problems, making their own actions part of the solution, building on their intuitive sense of their role in the game world. A gamer, confronting a challenging level, finds personal satisfaction in success—and personal motivation as well, rehearsing alternative approaches, working through complex challenges (often well into the night!). Many parents wish that they could get their children to devote this determination to solving their problem sets—it is an open question, however, whether simply working toward a better grade is an effective educational challenge. Games confront players with limits of space, time, and resources, forcing them to stretch in order to respond to problems just on the outer limits of their current mastery. The best games can adjust to the skills of their players, allowing the same product to meet the needs of a novice and a more advanced student. Indeed, the concept of advancing in "levels" structures the learning process such that players can't advance without mastery—something that curriculum- and test-designers have struggled to build into their work.

And games can enable multiple learning styles: for example, arts students might better grasp basic physics and engineering principles in the context of an architectural design program. Many of us whose eyes glaze over when confronted with equations on a blackboard find we can learn science more thoroughly when it builds on our intuitive understandings and direct observations, yet many important aspects of the physical world cannot be directly experienced in the classroom. Students often complain that they see few real-world applications for what they learn in advanced math and science classes, yet they might draw more fully on such knowledge if it was the key to solving puzzles or overcoming obstacles in a game environment—if the knowledge were a tool rather than an end. It is both a motivational distinction and a matter of mindset (and what is the object of teaching if not literally to change one's mind?).

The question for educators, then, is not whether games could someday work to teach students; they already do. The question is how to help these two worlds, that of gaming and that of education, to work together.

By design, our conceptual frameworks constitute thought experiments that seek to address core questions in game theory, pointing toward directions still largely unexplored by the mainstream industry. One could draw an analogy between these thought experiments and the early work of the Kuleshov group. For more than a year, Kuleshov taught his students at the VGIK school how to make movies without having any access to film stock; they conceptualized movies, blocked movies, imagined ways of dividing the action into shots, and even reedited existing movies, trying to develop a better understanding of how cinema operates. Kuleshov's experiments and insights have, however, guided decades of filmmakers as they sought to master the building blocks of film language. Similarly, our students are working through games on paper, examining existing games, brainstorming about future directions, and through this process, trying to address central issues surrounding games and education. As we developed these prototypes, we consulted with game designers, educational technologists, and the scientists and engineers most invested in the content areas, using them as a catalyst to get feedback and insight from practitioners.

We see these design documents as a form of game theory, one that starts with broad conceptual questions but addresses them through concrete examples. In the process of developing these frameworks, we have developed a much firmer grasp of the core challenges and opportunities that will shape the emergence of an educational games market. Operating within
an academic space, removed from the immediate need to ship product, we were able to ask more fundamental questions about the medium and to imagine new directions games might take. This essay will discuss four of those frameworks—Hephaestus, Supercharged!, Biohazard, and Environmental Detectives—describing the conceptual and practical challenges we confronted and what we think these examples reveal about the potentials of educational gaming.

The "games" we are describing have not been built—so far—though the next phase of the Games-to-Teach Project involves the development of playable modules that can be tested in educational contexts and the development of a government, foundation, industry consortium that can fund the actual production and distribution of the games. This essay describes games that are in a very real sense theoretical—games that might exist, someday, but whose current value lies in the questions they pose and the directions they point for future development.

Remediating Real World Play: Hephaestus

Hephaestus presented the challenge of translating the successful FIRST robotics competition to a digital space. FIRST is a "non-profit, educational organization that was founded to inspire and excite young people about science and technology by bringing together professional mentors with high school students from around the country." Started in 1989, FIRST was founded by Dean Kamen in the hopes that "the act of invention—that is, the work of scientists, engineers and technologists—[will be] as revered in the popular culture as music, athletics and entertainment are today." FIRST consists of two main competitions—the FIRST Robotics design competition and the Lego League, two competitions in which players design, construct, and operate robots in competitions. While Hephaestus incorporates elements of these other competitions, it is primarily based on the FIRST Robotics Competition.

Every January, the FIRST Robotics Competition pits over 650 teams from nearly every state in the United States as well as representatives from Canada and Brazil. Each team is typically comprised of thirty-five students and an adult mentor (mostly engineers who volunteer to work on FIRST). Teams have six weeks to design and construct their robots from a basic kit of robot parts, and a list of optional parts that they might cast or purchase. They must develop a team of remote-control robots and work in alliance with another team to move balls from one zone in the playing field to another, scoring points by placing the balls in a goal (the playing field is depicted in Figure 1.1). One point is awarded for each ball that is in the goal at the end of the competition. Ten points are awarded for each ball that is in a goal inside the alliances' territory. This rule encourages players to move the goals, which are initially placed in the center of the field, into their own territory.

The two-minute long matches are designed to foster both collaboration and competition. Each alliance scores points as a team, and alliances shift every match. Both the winners and the losers of the match receive Qualification Points that determine their place in the FIRST Robotics Competition Standards. Unlike most competitive events, where teams receive points for a win (or tie) or perhaps even by goals scored, the winning alliance earns triple the points of the losing alliance. So, if the blue alliance beats the red alliance by a score of 100 to 50, the red alliance, who lost, earns 50 points, and the winning blue alliance earns 150 points. This point structure is designed to minimize sabotage between alliances. Knocking out an opponents' robot or preventing him from scoring points ultimately lessens the winning alliances' score.

The FIRST Competition shares much in common with established game genres. Most obviously, FIRST is a competitive game, with elaborate game rules and structures. The game itself has two phases—a design phase, in which players are given fixed resources and limited time which constrain their design decisions, and a real-time action game, in which players deploy their robots to move balls, baskets, and robots across the floor. The robots' movements across the game floor, evading other robots, strategically positioning themselves near goals, and moving robots, baskets, and balls for their strategic advantage are elaborate contestations of space, which as we
More than simply machines designed to score points, the robots quickly become personalized avatars for the players, who decorate and paint them, and in some cases, create movies and computer animations personifying them. In a live action film created by students in Hammond, Indiana, two robots prom dance in a high school parking lot. In another short, a computer-rendered robot flies through outer space. Emerging through hundreds of hours of work by dozens of people, each robot embodies not only functional design decisions and aesthetic considerations, but also, according to FIRST Competition cofounder Woodie Flowers, aspects of the players' collective identities. This design and decoration are quite literally performances of understanding whereby the robots embody designers' understandings of robotics and aspects of their identities as designers; we wanted to leverage this identification process and preserve this pride in possession (and use) of knowledge in Hephaestus.

In designing Hephaestus, the Games-to-Teach team wrestled with how to leverage the engaging and educational aspects of the FIRST competition within a compelling computer game. How could we balance single and multiplayer game dynamics? How could we create a rule set that fosters collaboration and competition, an online system that encouraged peer-to-peer teaching through the interaction between novices and experts? How could we integrate online and offline game play? And how could we support a variety of different player tastes? How does the computer-mediated nature of digital gaming change the robotic design process? How does the computer-mediated nature of gaming affect social interactions?

Hephaestus is a massively multiplayer game in which players design robots, down to the gear level, to colonize a fictitious planet located in the Alpha Centauri system. Heavily volcanic, the planet Hephaestus is currently too dangerous for human colonization. Lava serves as both a danger and reward to players. Players can perish by falling into a lava crevice but also can earn rewards by diverting lava into pools for thermal energy collection. Players also can set up collectors for wind and solar energy. If players gather enough resources, they can collaborate with other teammates to construct bridges, walls, and buildings. Although players begin the game with simple stock robots, they gradually earn enough resources for customization. Players might change gear ratios, buy treads with greater friction, or add extra battery holders. Consistent with basic engineering principles, players must make tradeoffs—for instance, between energy capacity, mass (which affects their fuel economy), and speed. The computer offers powerful methods for visualizing these tradeoffs in real time.

Massively multiplayer games are not only games but also social systems—living, breathing communities with their own ecologies, life cycles, and cultures. One way to characterize designed social systems is through the notion of illuminative tensions. In Learning by Expanding, Yuro Engeström describes tensions as complementary and conflicting needs that reciprocally define one another and drive the dynamics of a social system. Mapping these tensions can enable researchers to identify the core activities and predict sources of change within a social system. For example, in their studies of a community of preservice teachers (Community of Teachers), Sasha Barab and colleagues used design tensions to examine the practical and theoretical issues that "fuel change and innovation." 18

In conceptualizing Hephaestus, the Games-to-Teach team identified several potential tensions: competition versus collaboration, robust simulation tools versus accessibility to new users, engrossing game dynamics versus appeal to broad audiences, and offline versus online activity. These tensions, which drive change and innovation in a system, are overlapping and often mutually reinforcing. FIRST cofounder Woodie Flowers describes the process of balancing FIRST as one of manipulating rules so that players are recognized for achievement and motivated to excel within a competitive framework, yet encouraged to collaborate and play fairly. 17 Players are motivated by a desire to excel and gain recognition within their school communities, among the FIRST competitors, and from their adult mentors. However, success demands collaboration with their teammates, their alliances, and their adult mentors. The competition values collaborative design, teamwork, mentorship, and constructive (as opposed to destructive) goals.

For the purposes of this essay, we will focus on one such tension in greater depth: online and offline practices. Our initial interviews with Flowers and students revealed that much of the appeal and educational value of FIRST came through interacting with physical materials—building drive trains, wiring circuits, and creating a physical robot that scoots across the floor. For many participants, the thought of learning engineering without interacting with actual steel, rubber, circuitry, and plastics is inconceivable. The Hephaestus team, then, didn't want to displacethe physical aspects of the FIRST competition, but rather identify ways that computer games could extend that experience in new directions. By remediating the FIRST competition as a massively multiplayer game on a fictitious planet, Hephaestus enables players to confront novel challenges that would be harder to model in real-world spaces, such as building robots to withstand immense amounts of heat, traverse in snow, or operate in high winds or on a planet with increased gravitational pull. Hephaestus players also face different design
tradeoffs. Players might need to design a robot with sufficient energy to cross an entire planet, or to traverse under water; such requirements might make it impossible to include certain features. The parallels to management or survival training (or experimental design—the game offering a way of reflecting on its own genesis as theory) suggest something of the polyvalence of this approach. In later phases of the game, players also are given access to materials and parts not available in FIRST, such as titanium alloys or solar panels. We incorporated a structural engineering component into the game, in which players can pool their resources and purchase bridges, walls, or other structures.

We also wanted to explore the ways that online and offline robotics competitions might inform one another. Engineers use computer-based tools in designing and prototyping, and Hephaestus could be used as a prototyping tool for FIRST competitors. Digital simulation technologies make robotics engineering accessible to a broader audience of students, and Hephaestus could be used by students who are looking for a less intensive introduction to robotics engineering, may not have opportunities to join a FIRST team at their local school, or might want to explore robotics engineering during the off season. In order to support this fluid interplay between online and offline practices, we envision a separate robot design tool that enables prototyping and testing robot configuration, premade robots that novices could use, and a massively multiplayer game dynamic that encourages sustained participation. Finally, we hope that success in Hephaestus might motivate more players to build their own robots, and the Hephaestus robot design tools includes actual part numbers and links to facilitate purchasing actual robot parts or schematics.

Fostering Intuitive Knowing: Supercharged!

Hephaestus illustrates how digital gaming facilitates complex engineering practices within massively multiplayer worlds. A second unexplored application of gaming technologies is in using gaming environments as visualization tools. As Steven Poole highlights in Trigger Happy, game worlds are entirely fabricated spaces: everything that exists on the screen was placed there by a designer for some reason.
The gameplay consists of two phases: planning and playing. As the player encounters a new level, she is given a limited set of charges that she can place throughout the environment; she will move either toward or away from the charge, enabling her to shape the trajectory of her ship. In the "playable" portion of the game, the player switches her charge (either positive, negative, neutral, or dipole), and manages a limited amount of fuel that can be used to directly propel the ship. Each level contains a set of obstacles common to electromagnetism texts, including points of charge, planes of charge, magnetic planes, solid magnets, and electric currents. Each of these obstacles affects the player's movement, according to laws of electromagnetism. The goal of Supercharged! is to help learners build stronger intuitions for how charged particles interact with electric and magnetic fields and use the laws of electromagnetism to solve novel problems in a variety of contexts.

Notably, Supercharged! is not designed to completely teach the student all there is to know about Electromagnetism. We do not believe that Supercharged! will ever replace Physics teachers, textbooks, or other educational materials. Rather, Supercharged! can be used as an instructional tool or resource within a broader pedagogical framework. Teachers might begin a unit on Electromagnetism by having students play several levels before encountering textbook or lecture explanations. Other teachers might use levels as demonstrations or as homework problems. One can even imagine Physics teachers using levels for testing purposes. However, Supercharged! affords players few opportunities for interacting with the laws of Electromagnetism quantitatively; those kinds of understandings may be best taught by more traditional means.

As Alex Rigopulos, cofounder of Harmonix Music Systems (makers of the PlayStation 2 game FreQuency), commented in one of our design meetings, electromagnetism is an intriguing area to explore through games, because Maxwell's equations translate readily into game mechanics. Much as Super Mario Brothers game players learn that ice causes Mario to skid across the floor, and quickly learn to predict where the intrepid plumber will stop skidding, Supercharged! players can learn that a positively charged particle traveling through a magnetic field careens in a specific direction, and get a "feel" for the mechanics of it. As Ted Friedman suggests in "Civilization and Its Discontents: Simulation, Subjectivity, and Space," part of the joy of playing a game such as Civilization is learning to "think" like the computer; players intuit not only the rules of the game world, but the likely results of specific interactions. Expert Supercharged! players might be able to predict the end location of a positive charge traveling at a given velocity through a magnetic field, just as experienced Civilization players might predict how a geographically isolated, resource-rich civilization will evolve. As Eric Zimmerman and Katie Salen argue, the process of gameplay can be thought of as observing a situation, making a decision, observing the results, and then continuing to make new decisions based on the outcomes of earlier decisions. These stages closely mirror the "scientific method" of constantly revising hypotheses through experimentation.

On the surface, Supercharged! has much in common with E+M visualization tools, such as Belcher's animations, as well as traditional simulation exercises where players can change parameters of a system and observe the results. However, embedding challenges within the tool requires users to actively monitor their performance, observing, hypothesizing, acting, and reflecting. In addition to being potentially more motivating for learners, engaging in such critical thinking processes is generally thought to be the basis of meaningful learning. As John Bransford and colleagues have shown, knowledge developed in the context of solving problems, is typically recalled better than knowledge learned by rote, and more readily mobilized for solving problems in novel contexts.

Despite the pedagogical potential of Supercharged! many questions remain. Just how robust are the understandings developed playing Supercharged!? Will players use concepts learned through playing the game to solve novel problems that arise in other contexts? There's still a large gap between, on the one hand, observing patterns and interactions in digital environments, placing charges, and devising strategies for solving puzzles, and, on the other hand, using knowledge of electromagnetism to design circuitry, performing experiments, or solve engineering problems. We think it is only by explicitly coupling the game with a range of other pedagogical models, such as problem-based or inquiry-based learning, that this transfer across contexts is likely to occur. Regardless, these challenges, the limitations of Supercharged! for learning the quantitative aspects of electromagnetism, and the importance an instructor can play in providing explanations, demonstrations, and structuring learning experiences, remind us that a game is a tool or a resource in a learning environment, not a magic box that ensures mastery over the content.

Stories for Learning: Biohazard

The pitch for Biohazard is straightforward: the relentless pace and shotgun presentation of medical material of NBC's ER, and the eerily plausible apocalypse of Crichton's Andromeda Strain or the nonfiction novel The Hot Zone, in the interface style of the award-winning PC game Deus Ex (a first-person "sneaker"/role-playing game from Ion Storm, considered one of the best PC games of recent years). What makes the project interesting to us as educational researchers, however, is its goals: to teach AP-level biochemistry material, and to try to communicate the feeling of “doing science,” all the
while making the presentation of the material interesting for players who are not students, and thorough enough for classroom teaching. What the educational theorist/computer scientist/software designer Roger Schank (among others) argues that, since understanding is to be performed in certain contexts (bus drivers do not drive in classrooms, they sit in buses on roads; managers manage under particular office conditions, not in idealized training situations), information should be taught in similar contexts. This "learning by doing" approach seems like common sense to those who've taught or learned by apprenticeship or on-the-job training, but the method is foreign to most in-school instruction (in which the retention of facts is tested very deliberately out of context; the rationale presumably being that the students should "know the material cold").

However, not all tasks are equally well suited to this instructional approach. Training bridge builders by having them build bridges seems sensible enough, and the task of bridge building scales straightforwardly from the road to the classroom (balsa wood offers a good analogical medium for experimentation); training doctors without pathogens or patients, by contrast, presents a problem of representation. The power of a learning-by-doing approach comes from its simultaneous stimulation of all the senses, a total acculturation of the learner in the moment that enables strong, extendible conditioning. But an instructional video can only offer visual problems and aural cues (and the links between them); a textbook presents problems and textual solutions (explanations, answers), and gives a particular spatial organization that doesn't reflect physical (lived) experience; lab work cuts students off from the breakneck pace of the ER, the limited materials of in-the-field engineering, the minute conversational cues that characterize officel politics. For activities that can't simply be replicated in the classroom (firefighting, emergency medical care, race car driving, real estate sales, etc.), a richer training medium is needed to acclimate students to a broader portion of the sensory spectrum associated with those practices. Moreover, narratives have the peculiar quality of making readers (players, viewers, interactors) care a great deal about the events they represent. Everyone has had the experience of being lost in a story; being lost in a textbook is an entirely different prospect. Indeed, the word "lost" is misleading, because readers or filmgoers who lose track of their physical surroundings are often hyperaware of what's going on in the story. The events are rendered with a vividness that leaves permanent memories, which can be evoked later with a turn of phrase or musical strain. That power of persuasion is used to full advantage in moral education (how many children learned to seek inner beauty from the story of the Ugly Duckling?), but the power of narrative contexts for teaching is underutilized in schools.

A walkthrough of the early moments of the game will make clearer the link between Biohazard's educational goals and its method (and its qualities as entertainment). At startup, the player is presented with her world, seen over the avatar's shoulder (as in adventure games such as Tomb Raider). She is in a hospital; her character is in the garb of a doctor, and an onscreen character is talking animatedly about the player's new job, while motioning for her to follow. Players familiar with the mouse-and-keyboard interface of first-person games will instantly recognize the visual style: the keyboard is used to move the character and conjure up menus, while the mouse activates items presented in a Deus Ex-style series of inventory boxes, menus, and text streams. Moving through the hospital after the tour guide, the player is surrounded by the ebb and flow of medical technicians at work; one of the game's characters approaches to assign the player a task—in this case, something as simple as checking in with a lab down the hall. The character speaks hasty directions; the player's real task at this point is to get acclimated to the layout of the hospital, which—although it is a fictional setting—is a slightly simplified amalgam of actual hospital layouts.

But the heart of the game is its dramatic force; rather than a lecture, the player is compelled by a visceral or an emotional logic. Rather than regurgitating context-free facts, the player must take the next step and utilize knowledge in tense, contextually rich situations. A little girl endures uncontrollable coughing fits, her suffering audible as the player confirms the steps of a testing procedure in an online manual before clicking the mouse and seeing herself perform the procedure. Shots from the first-person perspective are intercut with schematics of the body, establishing shots of the entire operating hospital wing (the flow of foot traffic made visible and useful for later play), reaction shots of the little girl, her coughing a rhythmic counterpart to the frenetic activity. The representational conventions of film and television are known to nearly every American; they provide a shorthand for engaging our emotions in service of aesthetic experience. In the filmic or literary moment we are alert to subtle cues, hidden information, logos beyond the merely deductive; isn't this precisely what educators want for their students? Can't we remember AP Chemistry as vividly (and as fondly) as we remember Casablanca? To date, games have had more success at creating emotional reactions through visceral action than through compelling storytelling. Elsewhere, we have argued that game designers tell stories through the organization and manipulation of space. In Biohazard, we developed some of these ideas further, exploring how emotional intensity can be heightened through evocative spaces, embedded narratives, or emotionally reactive third parties.

Video game players are familiar with the concept of the in-game tutorial: the skills they need to play the game are taught in the context of some sort of in-game "training period." The opening of Biohazard works this way, starting with genre assumptions (about everything from TV medical dramas to the preferred interfaces for first-person video games) and the willingness of the
We see the tentative proposal as the presentation of a complex problem and a real, implementable solution; there is no technology in the Biohazard précis that doesn't exist already. But one of the follies of the field of education is its conservative approach to new technologies; they tend to be met with initial enthusiasm, and on occasion find early adopters in schools, but new tools generally take a long time to reach their potential in schools (held back by a combination of very medium-based standards, unreliable performance, the need for technical education for teachers, and an ill-fittedness between the technologies' affordances and teachers' needs). Wireless computing is among the latest batch of panaceas to come out of Silicon Valley; in answer to the titular question of a CMS conference, "We wired the classroom—now what?"; new technologies promise an elegant solution: unwire it (the phrase is borrowed from another MIT research initiative, the "Unwiring the World" initiative at the Media Lab). Network infrastructure will be gaseous; word processors will be handheld and voice-activated; the Web will be everywhere; computing will happen without computers.

But the revolution in the way we approach computers is all promise; right now we need solutions for bringing handheld, wireless networking technology into the classroom in ways that, to borrow a formulation from constructionist pioneer Seymour Papert, addresses issues for both the next decade and next Monday (when the kids arrive for class at 8 A.M.). Revolutions in education, ironically enough, can't just happen overnight.

Environmental Detectives is GTT's entry into a new, wide-open field—handheld (computer) games for education. The possibilities that the technology holds should be clear: instant access, anywhere, to web-based information and specifically tailored apps for education, along with lightning-fast communications in and out of the classroom (between students and teacher(s), and among students). But there are important questions to be answered: How does wireless technology offer richer learning experiences? How do they facilitate the teaching of material in and out of the classroom? If we afford this new distributed technology a central role in the teaching process, what changes should the classroom undergo to enrich and enable the exchanges that constitute the act of education? And perhaps the most immediate questions: when is the technology going to work consistently, seamlessly, and logically? And what do we do in the meantime? The broader work of theorizing about the unwired classroom (and more broadly, the learning environment afled) can't be divorced from the practical matter of making it work in the first place.

Consider a relatively minor sample problem: Detectives relies on GPS hardware, connected to a PocketPC via the serial port; the software is written in Microsoft's young object-oriented language, C# (a descendent of C++), a cousin of Java in appearance); there is no official, documented method for interfacing with the serial port on a PocketPC in C#. We realized this days before the software framework was to be demoed to our collaborators in the MIT Environmental Engineering department—well after we had pitched.
the simulation. In sheer man hours, the knowledge was pricey, though in theory there was nothing to the job of writing it. In developing a framework for educators to design scenarios (described later in this essay), such straightforward development snags translate into major usability considerations for end-users.

Environmental Detectives is set to be beta-tested with MIT freshmen in Fall 2002; they will essentially take the part of environmental consultants, working in teams to determine the extent of contamination from a possible source of pollutant on MIT's campus, the affected locations, and possible plans for remediation (treatment of the contaminated area) if necessary. Their handheld devices—PocketPCs equipped with GPS radios and 802.11b network cards—will allow them to simulate in-the-field data collection (testing for contaminant concentration based on GPS location data), site interviews and desktop research (the wireless networking cards offer access to miniwebs of data for the sake of conciseness and focus, from EPA documents to executive summaries of resident interviews), and plan formulation and analysis. An important consideration for us is that the PocketPCs are not simply digital notebooks; they offer the unique ability to maintain a consistent underlying simulation. The distinction is a vital one; a traditional view of wireless computing allows us to bring our work (or play) wherever we go (reading email on the subway, playing Quake at the doctor's office), but we see wireless technology as a tool for switching around the relation between place and activity—in effect, bringing "wherever" into our work (or play).

From a practical standpoint, making the machine more aware of its surroundings makes the act of stepping outside more palatable to teachers for whom outdoors = field trip, with concomitant harm to student attention spans. Moreover, an activity that maps physical space and curricular space onto one another—in which physical location is another data structure for the software—lends continuity to the experience; the idea that setting should work in service of stories is old hat to authors of fiction, but that lesson has yet to be taken to heart by educational designers. But it's easy to make this pronouncement in a book chapter or corporate pitch; it must be tested by teachers, with students, on finicky hardware, or it remains an empty promise.

Conclusion: How and Why Game Theory?

As our four case studies illustrate, educational software design is neither a solved problem nor a single problem to be solved. But our conceptual designs respond to individual theoretical and practical concerns. Taken as a group, they also offer a methodology for "designing theory" in a way that can be of use to both the academic world and those "in the trenches" (a description that fits teachers and students equally well). Each design addresses different needs within the educational community; each reveals limitations in the ways that gaming and education are currently understood, and identifies opportunities for productively transforming that relationship. In this way, we see game design and learning as linked theoretical activities: the imaginative process of conceiving and testing frameworks for understanding, with the motivating need to communicate those frameworks to listeners with various knowledge bases.

The current phase of the Games-to-Teach Project involves implementing versions of some of the designs (Supercharged!, Environmental Detectives) in-house and testing them with groups of students. This is a necessary, arguably the most important, phase in the process of theory construction; we can ask the question, "What can we possibly make?" and follow a project through to its conclusion, asking the final questions, "What did the players think?" and "What did they learn?" The current media technologies, which are lower in cost, easier to use, and more accessible than traditional media production tools, enable a material component to brainstorming, blurring the lines between theorists and practitioners. Janet Murray has argued that the next generation of storytellers—the cyberbards—will be both artists and programmers; the same should also be said of critics and educators; blurring the lines between thinking about and making media should open up new opportunities for conversations across those various sectors. The language of critical theory can benefit from grounding in the experience of gameplay and game design; games themselves can be made immeasurably richer through the development of new models of interaction and representation (beyond the straightforwardly competitive and rigidly mimetic).

This is not to say, of course, that GTT offers a magic bullet for the problems of contemporary education, educational software, or game theory. Our team consists of students and faculty from across disciplines and areas of expertise, in the sciences, humanities, and outside the academy; a lingua franca does not develop overnight. And, throughout our first year, we encountered the typical problems associated with projects of this scale (the tradeoff between lowest-common-denominator design and the complexity of new concepts; the competing research interests of more than a half-dozen graduate students; the need to work toward a common goal with common deadlines). Moreover, maintaining a balance between the academic rigor of an MIT graduate program and our sponsors' desire for deliverables on a certain date meant that the role of the students underwent continuous redefinition. But we see these as productive challenges, not mere stumbling blocks; the very nature of our program is an object for further study and development. We all learned from each other as we collaborated on meeting...
the challenge of putting theory into practice and meeting our ideal of applied humanism. Students not only mastered an existing body of theoretical literature but also found ways to expand it, bringing it to bear on the practical challenges of creating games which would meet real world contexts. In the end, we argue that it is in the best interests of students, theorists of games and gaming, and designers to endeavor to bring not only Hamlet but Habermas and high school to the Holodeck.

Acknowledgments

This research was supported by an iCampus Grant from Microsoft Research. Comparative Media Studies Department, Massachusetts Institute of Technology, Cambridge. Correspondence should be addressed to Kurt Squire, Comparative Media Studies Department, 14N-211, Cambridge MA 02139.

The authors would like to thank members of the Games-to-Teach team for their intellectual contributions to this essay, including Randy Hinrichs, Alex Chiastic, Robin Hasock, Heather Miller, Zachary Nataf, Alice O'Driscoll, Sangita Shresthova, Jill Soley, Elliot Targum, Philip Tan Boon Yew, Katie Todt, and Tom Wilson.

Notes

6. The word "creative" in this context warrants comment. It is a term used in the games industry-and is reported in Kurt Squire, Henry Jenkins, and Games-to-Teach Team, Games-to-Teach Project Six Month Report (Cambridge, MA: MIT Press, 2001).
Most writing on video games considers either narrative concerns or gameplay and what is usually referred to as "interactivity." Instead of focusing on the "game" aspects of the video game, this essay looks at the video game as "video," or rather, as a medium of visual imagery. The video game began with perhaps the harshest restrictions encountered by any nascent visual medium in regard to graphic representation. So limited were the graphics capabilities of the early games, that the medium was forced to remain relatively abstract for over a decade. Gradually as technology improved, designers strove for more representational graphics in game imagery, and today they still continue to pursue ever more detailed representations approximating the physical world. At the same time, video games have come to rely on conventions from film and television, allowing the depiction and navigation of their diegetic worlds to seem more intuitive and familiar to players. Yet by limiting themselves to conventions established in other media, game designers have neglected the realm of possibilities which abstraction has to offer. This great, untapped potential will only be mined by a deliberate move back into abstract design that takes into consideration the unique properties of the video game medium.

In order to get a better sense of how abstraction has been used in video games, we might first examine some of the ways in which the video game can be seen as an extension of abstract art, and the different types of abstraction that can be present within a video game.