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1 Introduction

We often use visual representations to support mathemati-
cal thinking. Data visualizations are used in statistics, 
function graphs in algebra, and schematic drawings in 
geometry—the examples are boundless. Indeed, abundant 
theoretical work [e.g., Ainsworth 2006; National Research 
Council (NRC), 2006; Schnotz 2005; Uttal and O’Doherty 
2008] as well as empirical work (see Rau 2016 for a sum-
mary) supports this practice, suggesting that adding visual 
representations (e.g., graphs and other illustrations) to text-
based representations (e.g., word problems) and symbolic 
representations (e.g., equations) can enhance students’ 
learning.

Because no single visual representation perfectly depicts 
the complexity of mathematical concepts, instructors often 
use multiple visual representations, where the different rep-
resentations emphasize complementary conceptual aspects. 
For example, students learning about fractions typically 
encounter visual representations like those in Fig.  1: cir-
cle diagrams show fractions as parts of an inherent whole, 
whereas number lines show fractions as measures of rela-
tive magnitude (Kieren 1993; Post et al. 1982). Instructors 
may use visual representations (1) to familiarize students 
with visual conventions commonly used in the mathematics 
community, (2) to illustrate abstract complex concepts, (3) 
to enlarge the set of tools students have for engaging math-
ematics, and (4) to leverage students’ subjective prefer-
ences and expertise (see Acevedo Nistal et al. 2009; Singer 
2007).

However, multiple visual representations are not always 
more effective for promoting learning (Rau et  al. 2015). 
It is critical to remember that—even if a visual represen-
tation is more concrete than a symbolic representation—
the visual representation nevertheless remains something 
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that stands for a referent (i.e., what the representation is 
meant to depict) in the mathematical domain. Unfortu-
nately, relations between visual representations and their 
referents are often opaque, leading to difficulties learning 
with them (e.g., Ainsworth et al. 2002; diSessa 2004; NRC 
2006). These difficulties are implicated in the representa-
tion dilemma (Rau 2016): On the one hand, students have 
to learn domain knowledge from visual representations. For 
example, students can learn from the line graph in Fig.  2 
that the distance a rock dropped off a cliff travels in a given 
time interval increases as time increases. On the other 
hand, students have to learn about the visual representa-
tions; namely about its relationship to the referent. In learn-
ing about the graph in Fig.  2, they must learn what each 
axis represents and how to coordinate between the two. The 
representation dilemma presents a major educational chal-
lenge: Students are often expected to use unfamiliar visual 
representations to learn about unfamiliar concepts.

To overcome this dilemma, students need representa-
tional competencies: knowledge and skills that enable them 
to use visual representations to reason about and solve 
tasks (NRC 2006). The goal of this article is to present 

instructional principles that can help students acquire rep-
resentational competencies while they learn domain 
knowledge, thereby ensuring that ‘more’ (multiple) visual 
representations lead to better learning outcomes. This arti-
cle seeks to close a gap between prior research on learn-
ing with visual representations that has, by and large, 
focused on learning with text and a single type of visual 
representation (see Rau 2016), and the recommendation 
by mathematics practice guides to use multiple visual rep-
resentations [National Council for Teachers of Mathemat-
ics (NCTM) 2000, 2006; National Mathematics Advisory 
Panel (NMAP) 2008; Siegler et al. 2010]. To close this gap, 
we review extant research on representational competen-
cies and summarize principles that can guide instruction in 
accounting for students’ representational competencies.

Although the principles we present should apply 
broadly, in this article, we chose the domain of fractions 
for illustrative purposes. We chose fractions for two rea-
sons: First, recent literature has detailed how critical frac-
tions knowledge is for ensuring success in later mathemat-
ics (e.g., Siegler et al. 2011). Second, fractions represents a 
complex domain with many aspects that are differentially 
highlighted by alternate choices of representation (Behr 
et al. 1993; Ohlsson 1988). As such, thorough understand-
ing can only be reached by use of multiple representations 
which support learning of complementary aspects of the 
domain. To support our argument, we rely heavily on the 
first author’s work with the Fractions Tutor: an intelligent 
tutoring system for fractions learning that focuses on sup-
porting students’ representational competencies (e.g., Rau 
et al. 2015).

2  Why multiple representations: complementary 
conceptual advantages of visual representations 
of fractions

The mathematics education literature suggests that visual 
representations fundamentally shape how students concep-
tualize fractions (Charalambous and Pitta-Pantazi 2007). 
Moreover, instruction tends to use a multiplicity of rep-
resentations of fractions—in part because fractions are a 
notoriously complex domain. Knowledge of fractions and 
rational numbers can be seen as a “mega-concept” com-
posed of several subconstructs or alternative interpretations 
(Behr et  al. 1993; Ohlsson 1988). For instance, Behr and 
colleagues (1993) suggest at least six conceptual ways to 
interpret fractions: (1) parts of a whole, (2) decimals, (3) 
ratios, (4) quotient, (5) operators, and (6) measurements.

Visual representations appear to differ in their capacity 
to help students understand different aspects of fractions 
knowledge (Charalambous and Pitta-Pantazi 2007; Kieren 
1993). Arguments for the merits and limitations of various 

Fig. 1  Visual representations commonly used in fractions instruc-
tion: circle, rectangle, and number line
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visual representations for fractions are abound: Cramer and 
Wyberg (2009) argued discrete models, such as chip mod-
els (see Fig. 3d) may be well-suited to illustrate part-whole 
concepts (e.g., one of four sections is shaded), but may not 
be well-suited for helping children understand fractions 
as numbers with specific magnitudes. On the other hand, 
they found that area representations (e.g., circles, rectan-
gles) can help students understand the role the denominator 
for the size of a fraction, but are less helpful in supporting 
estimation with fractions. Some (e.g., Cramer and Wyberg 
2009) have argued that circle representations are the most 
powerful concrete representation because the whole cir-
cle inherently serves as a unit while illustrating both part-
whole concepts and the meaning of the relative sizes of 
fractions. Siegler and colleagues (2011) have argued that 
number lines are most powerful because they help support 
an integrated model of numerical magnitude that unites 
fractions with all real numbers. Others have argued that 
vector representations—specifically their slopes—are par-
ticularly efficient at helping students understand the rela-
tional nature of the way fractions concatenate numerators 
and denominators (Ohlsson 1988).

In sum, even these cursory reflections on the vast litera-
ture on fractions learning reveal that no single visual rep-
resentation can convey the multiplicity of related but only 
partially overlapping ideas that constitute the fractions 
mega-concept (Ohlsson 1988). Failure to make connec-
tions among these representations may lead students to rely 
exclusively on one conceptual interpretation, which can 
constrain understanding (Behr et  al. 1993; Kieren 1993). 
An example of a prominent misconception is the whole 

number bias. Reliance on symbolic representations of frac-
tions is associated with the whole number bias, whereby 
students misapply concepts and procedures that are appro-
priate for whole numbers but inappropriate for fractions 
(see Ni and Zhou 2005 for a review). For example, Mack 
(1995) found that 6th -grade students typically claimed that 
1/8 was greater than 1/6 because 8 is greater than 6. Boyer 
et  al. (2008) found a similar whole number bias for 4th-
grade students when comparing visual representations of 
fractions composed of partitioned bars. This bias was much 
less prevalent when comparisons were presented with 
unpartitioned bars than with partitioned bars. Therefore, it 
has been argued that heavy reliance of instruction on visual 
representations with easily countable pieces may be sub-
optimal in helping students overcome the whole number 
bias (Lewis et  al. 2015). Consequently, exposing students 
to a variety of visual representations may help them under-
stand abstract concepts (Singer 2009). Therefore, fractions 
instruction needs to help students take advantage of mul-
tiple visual representations to build robust understanding 
without being confused by the multitude of perspectives.

3  Representational competencies

Prior research on learning with multiple representations 
in a variety of domains suggests that students can only 
take advantage multiple visual representations if they 
acquire a number of representational competencies (for 
an overview see Rau 2016). Table 1 provides a summary 
of these representational competencies (discussed in this 
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Fig. 3  Some typically used visual representations include a fraction bars/area models, b circle representations/pie charts, c number lines, d dis-
crete chip models, e vector representations, a–d were adapted from Cramer et al. (2008)
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section) and of design principles for instructional inter-
ventions that can support these competencies (Sect. 4).

3.1  Visual understanding

Visual understanding is the ability to make sense of a vis-
ual representation by mapping its visual features to infor-
mation relevant to understanding the target domain (Ains-
worth 2006; Schnotz 2005). Learners are more likely to 
establish mappings between visual representations and 
referents they show if the representations’ visual fea-
tures look similar to their referents (Gentner and Mark-
man 1997). However, similarity-based mappings may not 
necessarily be correct or relevant. Therefore, acquiring 
visual understanding involves learning principles that 
allow students to distinguish conceptually relevant from 
irrelevant visual similarities between the representation 
and the referent. For example, students using the circle 
diagram in Fig. 1 may learn the general principle that cir-
cle diagrams depict fractions as the ratio of the shaded 
area relative to the whole area, which can be quantified 
as the number of equally-sized shaded sections relative to 
the total number of sections. A relevant feature is that the 
sections are equally sized, whereas an irrelevant feature 
is the specific color of the sections. The student may then 
apply this understanding to circle diagrams using differ-
ent colors.

3.2  Visual fluency

Students also need to acquire visual fluency with each indi-
vidual visual representation. Visual fluency is the ability to 
quickly “see” what a visual representation shows with min-
imal mental effort (Airey and Linder 2009; Kellman and 
Massey 2013). Domain experts exhibit such fluency, per-
ceiving information more efficiently than novices (e.g., Chi 
et al. 1981). Thus, experts can often “see at a glance” what 
a representation shows without any perceived mental effort. 
Developing visual fluency frees cognitive resources, allow-
ing students to engage in higher-order conceptual thinking 
(Gibson 2000; Kellman and Massey 2013). Visual fluency 
involves high efficiency in recognizing perceptual patterns 
(Kellman and Massey 2013) that results from perceptual 
chunking. Relevant visual features activate a correspond-
ing schema from long-term memory that constitutes the 
relevant concepts (Taber 2013). Thus, visual fluency allows 
students to make direct one-on-one mappings between per-
ceptual chunks and concepts (Koedinger et al. 2012).

3.3  Connectional understanding

Third, students need to acquire connectional understand-
ing: the ability to make conceptual connections between 
multiple visual representations (Ainsworth 2006). Con-
nection making involves mapping corresponding features 
across different visual representations (Schnotz 2005). As 

Table 1  Overview of representational competencies and principles for the design of instructional supports

Representational competences Involved knowledge and skills Learning principles

Visual understanding Ability to connect visual representation to concepts
Ability to distinguish relevant and irrelevant visual 

features

#1: prompt students to explain how each visual repre-
sentation depicts concepts

 Self-explanation prompts (design guideline 1.1)
 Actively establish mappings (design guideline 1.2)

Visual fluency Efficiency in seeing meaning in visual representations
Access to perceptual chunks

#2: interleave visual representations and activity types
 Variety of representations (design guideline 2.1)
 Frequently switch between activity types (design 

guideline 2.2)
 Frequently switch between representations (design 

guideline 2.3)
Connectional understanding Ability to connect multiple visual representations to 

one another
Ability to explain similarities and differences between 

visual representations

#3: prompt students to explain mappings between 
multiple visual representation

 Verbally explain how visual features of different repre-
sentations depict corresponding and complementary 
concepts (design guideline 3.1)

 Actively establish mappings (design guideline 3.2)
 Provide assistance (design guideline 3.3)

Connectional fluency Efficiency in connecting multiple visual representa-
tions

Access to multiple perceptual chunks
Flexibility to switch between multiple visual represen-

tations

#4: expose students to many opportunities to translate 
among visual representations

 Ask students to discriminate and categorize visual 
representations (design guideline 4.1)

 Provide immediate feedback (design guideline 4.2)
 Variety of representations (design guideline 4.3)
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mentioned, visual representations use features that may 
be somewhat similar to the referent. Hence, students may 
make connections based on similarity-based mappings. 
However, not all of these similarities are conceptually rel-
evant. Some of them are incidental similarities (i.e., surface 
similarities, such as the fact that both the circle and the 
rectangle in Fig. 1 are shaded). When relevant, these simi-
larities can make it easier for students to make connections 
(DeLoache 2000; Gentner and Markman 1997); but if these 
similarities are not conceptually relevant, they may lead 
students to make incorrect connections. Therefore, teach-
ing connectional understanding involves training students 
to distinguish surface-level similarities from conceptually 
relevant similarities among visual representations. Connec-
tional understanding also involves the ability to make sense 
of how one visual representation can constrain the inter-
pretation of the second representation, and how they com-
plement one another in depicting information (Ainsworth 
2006; Rau 2016). That is, students learn to explain corre-
spondences between visual representations (i.e., how both 
show similar information about domain-relevant concepts), 
and differences between them (i.e., how they show different 
information about the concepts).

3.4  Connectional fluency

Fourth, students need to acquire connectional fluency: the 
ability to perceive common patterns across different visual 
representations, to induce information from multiple visual 
representations without considerable mental effort, and to 
flexibly translate between visual representations (Airey 
and Linder 2009; Kellman and Massey 2013). For exam-
ple, a fractions expert might see “at a glance” that the cir-
cle in Fig. 1 and the number line in Fig. 1 show about 1/2 
of some unit. That is, the fractions expert is highly fluent 
in perceiving information in multiple visual representa-
tions and in seeing patterns they have in common. Connec-
tional fluency is analogous to visual fluency (Kellman and 
Massey 2013): Students gain efficiency by learning to treat 
the entire analog internal representation as one perceptual 
chunk instead of mapping particular analog features to one 
another. Hence, connectional fluency means that students 
can make simple one-on-one mappings between perceptual 
chunks obtained from different visual representations.

4  How to support students’ representational 
competencies through instructional 
interventions?

We have investigated principles that describe effective 
designs of instructional interventions that help students 
acquire the representational competencies just described 

in the context of fractions learning (see Table  1 for a 
summary).

4.1  Supporting visual understanding: prompt students 
to explain how each visual representation depicts 
concepts

According to cognitive theories of learning, the acquisition 
of sense-making competencies engages a specific type of 
learning process: namely, sense-making processes (Koed-
inger et  al. 2012; Rau 2016). Sense-making processes are 
typically verbally mediated because they involve explana-
tions of principles by which visual representations depict 
conceptually relevant information (Koedinger et al. 2012). 
They are explicit in that students have to willfully engage in 
them (diSessa and Sherin 2000). To help students engage in 
sense-making processes, instructional interventions should 
ask students to reason about how the given visual repre-
sentation depicts information. Hence, learning principle 1 
suggests that instruction should engage students in explicit 
sense-making processes aimed at explaining how each vis-
ual representation depicts concepts.

Prior research in a variety of domains has investigated 
how best to design instructional materials so as to enhance 
visual understanding. Two design guidelines emerge from 
this research. First, prompting students to self-explain how 
the visual representation corresponds to text-based expla-
nations has been found to be effective (Ainsworth and 
Loizou 2003; Seufert 2003) (guideline 1.1). To this end, 
students may be asked to self-explain what concept a spe-
cific visual feature depicts (e.g., the number of shaded sec-
tions in a circle diagram depict the numerator of a fraction), 
to explain how the visual representation shows domain-
relevant concepts (e.g., circle diagrams show that a frac-
tion is a portion of a unit), or to fill in information from a 
visual representation into a text-based version of the same 
information (e.g., translating the information shown in a 
circle diagram into a word problem in which two people 
share a pizza). Self-explanation prompts have been shown 
to be particularly effective if they help students focus on 
“why”-questions, because this may elicit self-explanations 
of principled knowledge (Berthold and Renkl 2009). Fur-
ther, self-explanation prompts are more effective if they ask 
students to self-explain specific connections than if they are 
open-ended (Berthold et al. 2008; van der Meij and de Jong 
2011).

A second design guideline regarding the support of vis-
ual understanding is that students should actively establish 
the relations between the visual representation and the con-
cepts they show by themselves (guideline 1.2). Research 
shows that students show higher learning outcomes if they 
actively create mappings between visual representations 
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and text describing the target concepts than if they receive 
pre-made mappings (Bodemer and Faust 2006).

Figure 4 shows an example of how these design guide-
lines can be implemented in instructional materials for 
fractions learning. This example is taken from the Fractions 
Tutor, the intelligent tutoring system for fractions learning 
mentioned above (Rau et  al. 2015). In this example, stu-
dents are prompted to self-explain how number lines show 
fractions principles (e.g., the more sections a number line 
is partitioned into, the smaller the sections become, which 
explains the inverse relationship between the size of the 
denominator and the fraction’s magnitude). Further, stu-
dents are asked to actively establish these mappings them-
selves because they have to fill in gaps to respond to self-
explanation prompts.

Rau and colleagues (2015) evaluated the effectiveness 
of such self-explanation prompts with the Fractions Tutor. 
6th-grade students (N = 112) were randomly assigned to 
work with one of four versions of the Tutor: (1) one using 
a single visual representation (namely, number lines) but 
no self-explanation prompts, (2) one using multiple visual 
representations (number lines, circles, rectangles, etc.) 
but no self-explanation prompts, (3) one using a single 
visual representation with prompts to self-explain con-
nections between the visual representation and concepts, 
and (4) one with multiple visual representations and self-
explanation prompts. In the versions with multiple visual 

representations, only one visual representation was pro-
vided at a time, but different ones over a sequence of prob-
lem-solving activities. Results showed that using multiple 
visual representations enhanced students’ performance on 
a test of fractions knowledge compared to individual rep-
resentations—but only if they were combined with self-
explanation prompts. Put differently, without self-explana-
tion prompts, students did not benefit from the multiplicity 
of visual representations.

In sum, instructors may implement learning principle 
1 by following the two design guidelines reviewed above. 
For example, they may ask students to explain how each 
visual representation depicts key concepts (e.g., numera-
tor, denominator) or to map visual features of the represen-
tation to the concepts. Because students often struggle in 
making such mappings, instructors should check whether 
students make correct mappings and provide adequate feed-
back and assistance.

4.2  Supporting visual fluency: interleave a variety 
of visual representations and activity types

Students acquire visual fluency by engaging in implicit, 
non-verbal, inductive processes (Koedinger et  al. 2012). 
Fluency-building processes are inductive because they 
involve learning from experience with many examples 
without explicit instruction (Koedinger et al. 2012). These 

Fig. 4  Example activity from 
the Fractions Tutor to support 
visual understanding
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processes are considered to be non-verbal because they do 
not require explicit reasoning (Kellman and Massey 2013). 
They are implicit because the learning processes are unin-
tentional and unconscious (Shanks 2005), emerging from 
experience with many examples (Gibson 2000; Kellman 
and Massey 2013). Hence, learning principle 2 suggests 
that instruction should engage students in implicit fluency-
building processes aimed at learning from exposure to 
various example representations. We present three design 
guidelines that can help instructors engage students in vis-
ual fluency-building processes.

First, students should be exposed to numerous examples 
of the same type of visual representation, while inciden-
tal features vary and conceptually relevant features remain 
constant (Massey et al. 2011) (guideline 2.1). This guide-
line draws on research on the interference effect (de Croock 
et  al. 1998), which suggests that interleaving aspects of a 
learning task that vary irrelevant features improves stu-
dents’ understanding of relevant features. This attuning 
to relevant features of representations does not require 
explicit, verbally mediated processes but can happen via 
implicit, non-verbal forms of learning (Koedinger et  al. 
2012).

Second, students should frequently switch between dif-
ferent activities for which the given type of visual repre-
sentation is used (Rau et  al. 2013) (guideline 2.2). This 
guideline also draws on the interference effect: if students 
encounter the visual representation across a variety of 
activity types for which the given representation provides 
useful information, students are likely to reactivate their 
knowledge about which visual features are conceptually 
relevant frequently. This process of repeated reactivation 
enhances the likelihood that they will be able to recall this 
knowledge more easily later on, without having to invest 
mental effort in doing so (de Croock et  al. 1998; Sweller 
1990).

Third, students should frequently switch between differ-
ent types of visual representations (Rau et al. 2014) (guide-
line 2.3). Each switch requires that students reactivate their 
knowledge about the visual features of a specific visual rep-
resentation, thereby increasing the chance that students will 
be able to quickly access that knowledge later on.

Our research addressed the practical question of how to 
combine or prioritize these principles. Specifically, when 
forced to make a decision, is it more important to interleave 
the types of activities or to interleave the types of represen-
tations? One experiment with 5th- and 6th-grade students 
(N = 158) tested whether switching frequently between 
visual representations is more important than frequently 
switching between activity types, or vice versa (Rau et al. 
2013). The experiment compared a version of the Frac-
tions Tutor in which students frequently switched between 
visual representations but switched less frequently between 

activity types (e.g., a block of successive fraction conver-
sions using circle, rectangle, and number line representa-
tions; followed by a block of addition using the three rep-
resentations; followed by a block of subtraction using the 
three representations) to a version in which students fre-
quently switched between activity types but not between 
visual representations (e.g., a block of circle activities on 
fraction conversion, addition, and subtraction; followed by 
a block of rectangle activities on the three activity types; 
followed by a block of number line activities on the three 
activity types). Students showed higher learning outcomes 
if they had frequently switched between activity types 
rather than visual representations. This result suggests that 
when instructional materials involve multiple activity types 
and multiple visual representations, it is more important to 
interleave activity types (guideline 2.2) than visual repre-
sentations (guideline 2.3).

A follow-up experiment with 4th- and 5th-grade students 
(N = 230) tested whether—in addition to interleaving activ-
ity types—the types of visual representations should also 
be interleaved (Rau et al. 2014). The experiment compared 
four versions of the Fractions Tutor that switched between 
visual representations after each activity, after every six 
activities, after 36 activities, or with gradually increasing 
frequency. All versions frequently switched between activ-
ity types. Students showed higher learning outcomes when 
they switched visual representations after every activity, 
compared to the other sequences. This result suggests that 
visual representations should be interleaved (guideline 2.3) 
in addition to activity types (guideline 2.2).

Many curricula implement learning principle 2 by “spi-
raling” through (i.e., switching frequently between) differ-
ent topics (Harden and Stamper 1999), but they do not nec-
essarily switch frequently between visual representations. 
Instructors may consider altering the sequence of problem-
solving activities so that both activity types and visual rep-
resentations are interleaved.

4.3  Supporting connectional understanding: prompt 
students to explain mappings between multiple 
visual representations

Similar to visual understanding, connectional understand-
ing is the result of verbally mediated sense-making pro-
cesses. Students acquire connectional understanding by 
engaging in conceptual, verbally mediated sense-making 
processes involved in relating visual features of one rep-
resentation to visual features of another representation 
because they show corresponding conceptual aspects 
about the domain knowledge. The processes involved in 
acquiring connectional understanding are similar to the 
processes engaged when acquiring visual understanding, 
because in both cases, students explain mappings between 
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conceptually relevant features. However, the nature of map-
pings is different when students make connections between 
multiple visual representations because they involve map-
pings between multiple visual features, whereas the map-
pings discussed above are between one visual feature and 
a textual or symbolic feature or an abstract concept. When 
students make connections between multiple visual repre-
sentations, the representations may share visual features 
that are conceptually relevant, but they may also share 
irrelevant surface-level features, which may lead students 
to make incorrect connections. Therefore, a student’s abil-
ity to make connections between multiple visual represen-
tations may build, at least to some extent, on the student’s 
visual understanding: the student needs to conceptually 
understand how a given visual representation denotes infor-
mation and has to be able to distinguish conceptually rele-
vant from irrelevant visual features. In sum, learning prin-
ciple 3 suggests that instruction should engage students in 
explicit sense-making processes aimed at explaining con-
nections among multiple visual representations.

Empirical research in a variety of domains has yielded 
a number of design guidelines for instruction that supports 
connectional understanding (guideline 3.1). First, students 
should verbally explain which features of the various repre-
sentations depict corresponding concepts (i.e., similarities 
between the representations) and which features show com-
plementary information (e.g., number lines can more eas-
ily depict fractions larger than 1, compared to circles and 

rectangles). For example, prompting students to such self-
explain mappings has been shown to enhance learning of 
domain knowledge (Berthold and Renkl 2009; van der Meij 
and de Jong 2011).

Second, as with visual understanding, students should 
actively establish mappings between visual features of the 
representations (guideline 3.2).

Third, because students tend to focus on surface features 
instead of conceptually relevant features (Ainsworth et al. 
2002; Rau et al. 2014), they need assistance in identifying 
relevant perceptual features (guideline 3.3). Such assistance 
can be provided by giving feedback on student-generated 
connections (Bodemer and Faust 2006; van der Meij and 
de Jong 2006) or color coding (Berthold and Renkl 2009). 
Assistance is particularly important for students with low 
prior knowledge (Bodemer and Faust 2006; Stern et  al. 
2003) and for complex problems (van der Meij and de Jong 
2006).

Figure 5 shows an example of instructional support for 
connectional understanding from the Fractions Tutor. First, 
students are prompted to explain these mappings (guide-
line 3.1). To this end, students receive self-explanation 
prompts at end of each problem (section C in tutor screen 
shown in Fig. 5). The prompts ask students to relate the two 
representations by reasoning about how they depict frac-
tions. Second, to help students actively establish mappings 
between visual representations (guideline 3.2), the Frac-
tions Tutor uses worked examples (Renkl 2005). Students 

Fig. 5  Example activity from 
the Fractions Tutor to support 
connectional understanding
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are first presented with a worked example (Fig.  5a) that 
uses a visual representation they are likely more familiar 
with to demonstrate how to solve a fractions problem (e.g., 
a rectangle). Students complete the last step of the worked-
example problem (step A.3). With the worked example still 
on the screen, they then see an analogous problem requir-
ing them to use the number line (Fig.  5b). Students are 
prompted to use the rectangle to help them complete the 
number line activity, so as to encourage them to establish 
mappings between corresponding visual features (e.g., the 
sections between 0 and the dot in the number line corre-
spond to the shaded sections in the rectangle because both 
visual features show the numerator). Finally, students 
receive assistance (guideline 3.3) in the form of feedback 
and on-demand hints on problem-solving activities and on 
their responses to self-explanation prompts.

An experiment with the Fractions Tutor evaluated the 
effectiveness of providing support for connectional under-
standing (Rau et  al. 2016). 4th- and 5th -grade students 
(N = 428) were randomly assigned to work with one of sev-
eral versions of the tutor that either did or did not contain 
the support for connectional understanding just described. 
Results showed that a version of the Fractions Tutor that 
did include support for connectional understanding yielded 
higher learning outcomes on a fractions knowledge test 
than versions that did not include support for connectional 
understanding.

In sum, instructors can implement learning principle 3 
by asking students to actively identify visual features in dif-
ferent visual representations that show corresponding con-
cepts, and by asking them to explain differences between 
visual representations, as one may show information the 
other one does not. It is likely that students need assistance 
in explaining these mappings, especially if the domain 
is complex. In this case, instructors can provide worked 
examples, but they should make sure students still become 
active in explaining the connections in their own words, 
for instance by prompting students to self-explain the map-
pings shown in the worked examples.

4.4  Supporting connectional fluency: expose students 
to many opportunities to translate among visual 
representations

As with visual fluency, students acquire connectional flu-
ency by engaging in implicit, non-verbal inductive learning 
processes. Hence, similar to support for visual fluency, sup-
port for connectional fluency should provide students with 
experience translating among many example representa-
tions without explicit instruction (Koedinger et  al. 2012). 
Hence, learning principle 4 suggests that instruction 
should engage students in implicit fluency-building pro-
cesses aimed at translating among visual representations.

Research on perceptual learning (Kellman and Massey 
2013) in a variety of domains provides design guidelines 
for instruction that supports connectional fluency. First, stu-
dents should gain experience in discriminating and catego-
rizing multiple visual representations (guideline 4.1). Sec-
ond, students should receive immediate feedback on these 
discrimination and classification activities (guideline 4.2). 
Third, students should practice with many varied example 
representations, sequenced such that consecutive examples 
emphasize relevant visual features (guideline 4.3).

Figure 6 shows an example from the Fractions Tutor that 
illustrates these guidelines. First, students are asked to dis-
criminate and categorize visual representations. In Fig. 6, 
they have to sort the representations provided in the box on 
the left into sets of equivalent fractions by dragging them 
into the boxes on the right. Second, students receive imme-
diate feedback on this task (e.g., a green halo indicates 
the representation was dropped in the correct box). Third, 
students receive practice opportunities with many varied 
visual representations. To encourage students’ engage-
ment in non-verbal processes, students are instructed to 
solve the problem visually by estimating the relative size 
of the fractions, rather than by solving it conceptually or 
computationally.

The previously mentioned experiment with the Fractions 
Tutor also evaluated whether providing support for connec-
tional understanding is effective (Rau et al. 2016). A second 
factor (i.e., besides support for connectional understanding) 
was whether or not students received the support for con-
nectional fluency just described. Results showed that sup-
port for connectional fluency was effective, but only when 
combined with support for connectional understanding.

In sum, instruction can implement learning principle 4 
by exposing students to a variety of examples of the visual 
representations and asking students to match representa-
tions not by verbally explaining the connections but by rely-
ing on visual features. Many instructional materials engage 
implicit fluency-building processes; for instance, there are 
games in which students compete with one another as they 
try to find matching representations depicted on a screen 
or on cards. Given the current state of research, it seems 
important that instructors ensure that students are exposed 
to systematic variations of visual features and that they 
receive immediate feedback on whether their connections 
are correct or incorrect. Further, support for connectional 
fluency should be combined with support for connectional 
understanding.

5  Open questions and future directions

Research that uses rigorous psychological methods to inves-
tigate how best to help students acquire representational 
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competencies involved in learning mathematics with mul-
tiple visual representations is still relatively novel. Conse-
quently, there are many open questions that future research 
should address—for the specific domain of fractions and 
for mathematics learning more generally. Here we discuss 
three that we find particularly interesting.

First, we know relatively little about how the different 
representational competencies described above build on 
one another. For example, when students acquire connec-
tional understanding, is it helpful if they have some level 
of visual understanding with at least one of the visual rep-
resentations? This is an important question because it may 
suggest alternatives to relying on text-based representations 
to help students acquire visual understanding: students may 
be able to use a well-understood or privileged visual rep-
resentation to understand a novel visual representation and 
acquire, at the same time, connectional understanding and 
visual understanding of the novel representation (see Ace-
vedo Nistal et al. 2009).

Second, our focus has primarily been on how best to 
use multiple visual representations without addressing 
the question of which representations to choose. A sec-
ond, related question concerns the possibility that some 
visual representations may be intuitively more accessible 
than others because they align with the structure of human 
cognitive architecture. For instance, Tversky et  al. (2000; 
also see Tversky 2011) hypothesized that some visual rep-
resentations convey meaning more intuitively than others 

because the human brain seems to be sensitive to perceiv-
ing their referents from their physical structures. One 
obvious example is spatial iconicity, where graphic space 
is used to represent scaled versions of real space. To the 
extent that privileged representations can be found in spe-
cific domains, employing them could help solve the repre-
sentation dilemma (but see Acevedo Nistal et al. 2009 on 
subjective factors). Specifically, deploying them as anchor 
representations might help optimize the web of meaning 
that emerges from use multiple representations.

Privileged representations seem to exist for at least 
some subconstructs of the fractions/rational number mega-
concept. Research suggests that many mammalian spe-
cies possess a dedicated system that can process the mag-
nitudes of nonsymbolic fraction analogs (see Jacob et  al. 
2012 for a review). Evidence for these accounts continue to 
mount, as sensitivity to nonsymbolic ratio magnitudes has 
been found by a number of experiments involving a range 
of different methods and subjects  (see Fig.  7), including 
non-human primates (e.g.,Vallentin and Nieder 2008), pre-
verbal infants (e.g., McCrink and Wynn 2007), elementary 
school-age children (e.g., Huttenlocher et  al. 2002), and 
adults (Matthews and Lewis 2017). Indeed, some research 
suggests that these nonsymbolic fraction magnitudes are 
processed automatically (Fabbri et  al. 2012; Jacob and 
Nieder 2009; Matthews and Lewis 2017; Yang et al. 2015).

Indeed, research with young children suggests per-
ceptual sensitivity to nonsymbolic fraction analogs is 

Fig. 6  Example activity from 
the Fractions Tutor to support 
connectional fluency
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preferentially leveraged by a particular class of nons-
ymbolic representations, specifically those composed of 
unpartitioned, continuous components. For instance, Boyer 
et al. (2008) compared two versions of a proportion match-
ing task with K-4th grade students. Given a target propor-
tion (Fig. 8, left) students had to select one of two choices 
(Fig.  8, right). They performed significantly worse when 
ratios were partitioned into countable pieces, which encour-
aged counting (Fig. 8a) than when they were unpartitioned 
(Fig. 8b). This finding suggests that young children possess 
the necessary perceptual abilities for rudimentary propor-
tional reasoning but that, partitioned representations are 
less effective than continuous representations for support-
ing this reasoning (see also Boyer and Levine 2012; Jeong 
et al. 2007). This body of findings led Lewis et al. (2015) to 
propose that early fractions instruction should incorporate 
unpartitioned continuous nonsymbolic ratios due to their 
potential standing as privileged visual representations.

We do not seek to endorse this recommendation; rather, 
we feel a brief review of this argument illustrates why 
research should investigate the possibility that there may be 
privileged visual representations when choosing from vast 
spaces of available visual representations. If there indeed 
are privileged representations, they may enhance visual 
understanding and perhaps serve as anchors for cultivating 
connectional understanding, and these in turn may enhance 

further representational competencies. The suggestion that 
some visual representations may be inherently better-suited 
than others for communicating their referents in particular 
domains is tantalizing, but there is a dearth of research in 
this area, and the question remains an open one.

Finally, we know relatively little about how specific 
classroom-based implementations of the design principles 
described above affect students’ learning. Many interven-
tions can help students explain how a given visual repre-
sentation of fractions depicts information (design principle 
1), in ways that conform to the guidelines described above. 
For example, an instructor may have students collabora-
tively discuss representational conventions and provide 
assistance in the form of verbal feedback. Alternatively, 
an instructor may provide worked examples on worksheets 
that ask individual students to identify visual features that 
show particular concepts and provide assistance in the form 
of written feedback. Which implementation is more effec-
tive and why?

To address these open questions, the research commu-
nity would benefit from reciprocal collaborations among 
mathematics education researchers, cognitive scientists, 
and research-oriented instructional practitioners. Such col-
laborations would promote rigorous experiments that can 
evaluate the effectiveness of realistic interventions designed 
to support representational competencies in real classrooms 

Fig. 7  Tasks used to investigate the cognitive primitives account. 
Vallentin and Nieder (2008) had monkeys and humans complete a 
forced-choice ratio matching task (a). Participants saw several distinct 
yet equivalent instantiations of each ratio (b). Matthews and Chesney 

(2015) showed that adult humans could accurately complete cross 
format nonsymbolic ratio matching tasks (c) faster than they com-
pleted symbolic ratio matching tasks (d)

Fig. 8  Partitioned representa-
tion (a) versus continuous repre-
sentation (b) used by Boyer and 
Levine (2012)
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over longer periods. For example, our understanding of 
how representational competencies allow students to navi-
gate the representation dilemma would greatly benefit from 
gathering data about students’ visual understanding and 
fluency and about their connectional understanding and flu-
ency over the course of an entire curriculum.

6  Conclusions

Visual representations are powerful educational tools that 
are commonly used in mathematics instruction because 
they have the potential to significantly enhance students’ 
mathematics learning. However, use of multiple visual 
representations can also impede students’ learning; for 
example, if students fail to understand how they depict 
information or if they fail to make connections among 
multiple visual representations. Hurdles to using visual 
representations result from the representation dilemma: 
Students often use unfamiliar visual representations to 
learn about unfamiliar concepts. We provided an over-
view of representational competencies that allow students 
to navigate the representation dilemma, using fractions as 
an illustrative domain. We presented four learning princi-
ples and accompanying design guidelines that can inform 
instructional interventions that support students in acquir-
ing these representational competencies. While the prin-
ciples we described are based on research in a variety of 
domains and likely broadly applicable, we illustrate pos-
sible implementations of these principles and provide evi-
dence for their effectiveness in the domain of fractions. 
Finally, we described several open questions that remain to 
be addressed. Because representational competences play 
a key role in students’ mathematics learning, research that 
yields principles for the design of supports for representa-
tional competencies is likely to yield more successful math-
ematics instruction.
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