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Abstract. Most STEM domains use multiple visual representations to illustrate
complex concepts. While much research has focused on helping students make
sense of visuals, students also have to become perceptually fluent at translating
among visuals fast and effortlessly. Because perceptual fluency is acquired via
implicit, nonverbal processes, perceptual fluency trainings provide simple
classification tasks that vary visual features across numerous examples. Prior
research shows that learning from such trainings is strongly affected by the
sequence of the examples. Further, prior research shows that perceptual fluency
trainings are most effective for high-performing students but may confuse low-
performing students. We propose that a lack of benefits for low-performing
students may result from a perceptual expert blind spot of instructors who
typically develop perceptual fluency trainings: expert instructors may be unable
to anticipate the needs of students who do not see meaningful information in the
visuals. In prior work, we used a machine-learning approach to develop a
sequence of example visuals of chemical molecules for low-performing stu-
dents. This study tested the effectiveness of this sequence in comparison to an
expert-generated sequence in a randomized experiment as part of an under-
graduate chemistry course. We determined students’ performance based on log
data from an educational technology they used in the course. Results show that
the machine-learned sequence was more effective for low-performing students.
The expert sequence was more effective for high-performing students. Our
results can inform the development of perceptual-fluency trainings for adaptive
educational technologies.
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1 Introduction

Visual representations are often used to illustrate concepts in science, technology,
engineering, and math (STEM) instruction [1–3]. For example, chemistry instruction on
bonding typically uses visuals such as Lewis structures and space-filling models of
molecules (see Fig. 1) [4]. Multiple visual representations can enhance learning because
they provide complementary information about the to-be-learned concepts [5–7]
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(e.g., the Lewis structure shows how many electrons form bonds, the space-filling model
shows the geometry of the molecule). However, multiple visual representations can
impede learning if students are unable to make such connections among them [7, 8].

Most prior research on connection making among visuals has focused on helping
students make sense of the connections by prompting them to explain differences and
similarities between visuals [5, 9, 10]. For example, a student has to explain similarities
in how the visuals in Fig. 1 show atoms: the H’s in the Lewis structure in Fig. 1a
correspond to the white spheres in the space-filling model in Fig. 1b because both show
hydrogen atoms. They have to explain differences, for example that the dots in the
Lewis structure show electrons that are not shown in the space-filling model.

By contrast, little research has focused on the role of perceptual fluency in students’
learning: that is, the ability to quickly and effortlessly integrate information from
multiple visuals [7, 11]. For example, students need to immediately see that the visuals
in Fig. 1 show the same molecule and translate between them as fluently as bilinguals
translate between languages [7, 12, 13]. Perceptual fluency frees cognitive resources for
future learning and effortful conceptual reasoning [13, 14]. Because perceptual fluency
is acquired via implicit, inductive, nonverbal processes [15, 16], instructional trainings
enhance perceptual fluency by exposing students to a sequence of many simple
problems that ask them to quickly judge what a visual shows [7, 11]. Perceptual-
fluency training sequences make use of the contrasting cases principle, so that con-
secutive examples vary visual features so they draw students’ attention to relevant
features [7, 11]. However, while such trainings have proven effective for high-
performing students, they are often ineffective for low-performing students [17, 18].

It is possible that the ineffectiveness of perceptual-fluency trainings for low-
performing students is due to a perceptual expert blind spot on the part of the designers
of instructional sequences. Sequences that present contrasting cases may be appropriate
for high-performing students who already have a preliminary understanding of which
visual features are meaningful. However, such sequences may be ineffective for low-
performing students who have little prior knowledge about these features. For an
instructional designer who is an expert in processing the visuals, it may be difficult to
empathize with students who do not “see” meaning in the visuals [3, 7, 19].

Fig. 1. (a) Lewis structure and (b) space-filling model of ammonia.

Using Machine Learning to Overcome the Expert Blind Spot 407



In prior work [38], we used a machine-learning algorithm to develop a sequence of
visuals for low-performing students. The machine-learned sequence was more effective
than an expert sequence for participants from Amazon’s Mechanical Turk (MTurk)
service. However, it is unclear whether the machine-learned sequence is more effective
than an expert sequence in a realistic learning context. To this end, we conducted an
experiment with undergraduate students in a chemistry course.

2 Theoretical Background

In the following, we briefly review prior research on perceptual fluency as well as our
own prior work on developing an instructional sequence of visual representations for
students who lack prior knowledge about the visual representations.

2.1 Inductive Learning of Perceptual Fluency

In contrast to a large body of research on verbally mediated explanation-based sense
making of visuals (see [5, 7] for overviews), research on the role of perceptual fluency in
education is still relatively novel. This line of research builds on the expert-novice
literature, which shows that experts see meaningful connections among visuals like the
ones in Fig. 1 quickly and almost automatically [15, 16, 20, 21]. Experts are able to “at a
glance” see meaning in visuals because translating and combining information from
them takes little or no cognitive effort [11, 22]. This highlevel of efficiency at translating
among visuals results from perceptual chunking: visual features of the representations
serve to retrieve schemas that describe conceptual information from long-term memory
[23, 24]. This high efficiency frees cognitive resources for higher-order thinking [12, 23]
and is considered an important learning goal in many STEM domains [3].

Cognitive learning theories suggest that students acquire perceptual fluency via
inductive processes involved in pattern learning [21, 25]. These processes involve both
bottom-up mechanisms (e.g., a visual feature cues the retrieval of a conceptual schema)
and top-down processes (e.g., conceptual schemas direct a student’s visual attention to
relevant visual features). Such inductive processes are considered to be non-verbal [23,
25] because verbal reasoning is not necessary [11, 13] and may even interfere with the
acquisition of perceptual fluency [19, 26]. Consequently, students do not require direct
instruction to become perceptually fluent, but rather acquire perceptual fluency through
experience-based instructional sequences that expose them to many visuals [11, 21].

2.2 Perceptual-Fluency Trainings

In line with cognitive learning theories, perceptual-fluency trainings typically expose
students to many examples, for instance in classification problems that ask students to
quickly translate between visuals while providing simple feedback on whether the clas-
sification is correct or incorrect [27–30]. Because perceptual learning is strongly influ-
enced by the order in which visuals are presented [7], perceptual-fluency trainings
purposefully sequence visuals so that consecutive problems vary irrelevant visual features
but repeatedly expose students to relevant features [11]. Through experience with many
examples, students inductively learn to attend to relevant visual features [11].
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The effectiveness of perceptual-fluency trainings has been demonstrated in many
STEM domains, including math [31, 32] and chemistry [17, 33]. For example, Fig. 2
shows a perceptual-fluency problem from a training we developed for chemistry stu-
dents. Each problem asks students to judge whether two visual representations show
the same molecule or not. They receive many such problems in a row, sequenced
according to the principles just described.

However, positive effects of such perceptual-fluency trainings have been confined
to students who have substantial prior knowledge about the visual representations and
the concepts they show [17, 18]. Indeed, much of the pioneering work on perceptual-
fluency trainings in STEM was conducted with students after they had received con-
siderable conceptual instruction and problem-solving practice with the visual repre-
sentations [32, 34]. Further, recent research shows that students benefit from
perceptual-fluency trainings only after they have acquired conceptual knowledge
about connections among the visual representations [17, 18].

It is possible that students need to acquire conceptual knowledge about the visual
representations before they can become perceptually fluent with them, as proposed by
prior research [18]. An alternative explanation is that the lack of effectiveness of
perceptual-fluency trainings for students with low prior knowledge may result from an
expert blind spot on the part of instructional designers. The expert blind spot is a
known phenomenon in the literature on conceptual learning because it can interfere
with instructors’ anticipation of student difficulties, which may hamper their ability to
develop effective instruction [35]. However, we are not aware of any research on
perceptual fluency in education that addressed this phenomenon. Specifically, while it
is well documented that experts are unaware of why or how they perceive information
in a certain way [19, 23, 36], knowledge of this lack of awareness has not informed the

Fig. 2. Example perceptual-fluency problems in the expert-generated training sequence.
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instructional design of perceptual-fluency trainings. For example, it is possible that
instructors create sequences of visuals that inadvertently assume that students pay
attention to specific visual features. In our prior work, which we review next, we used a
machine-learning approach that is not subject to expert blind spot biases to create
sequences for perceptual trainings for novice students.

2.3 Machine-Learned Sequences for Perceptual-Fluency Trainings

In prior work, we drew on Zhu’s machine-teaching paradigm [37], which inverses
typical machine-learning approaches to reverse-engineer optimal training sequences
(for a detailed report see [38]). Given a cognitive model of a student learning to
translate between pairs of visuals, the machine-teaching algorithm identifies a sequence
of pairs that is most effective for training the cognitive model. To this end, the algo-
rithm draws possible perceptual-fluency problems (e.g., Figure 2) from an underlying
training distribution (not necessarily independently and identically distributed) to form
a training sequence. Then, the cognitive model is trained with this sequence. Specifi-
cally, we used a feed-forward artificial neural network (ANN) as our learning algo-
rithm. The inputs to the ANN were two feature vectors that corresponded to the visual
features of the two visuals in a given perceptual-fluency problem. The ANN had
mapped each of the two feature vectors to an embedding that corresponds to a space
where visuals of similar molecules are close and visuals of dissimilar molecules are
distant. The output was a probability that the two visuals showed the same molecule.

For training, we used back propagation with a history window and multiple back
propagation passes, so as to emulate the fact that humans remember past consecutive
problems and that humans update their internal models by reviewing the current
problem along with the latest problem several times. Then, the effectiveness of the
sequence is evaluated based on how well the cognitive model performs on a perceptual-
fluency test, which is composed of a sample of perceptual-fluency problems drawn
from a separate distribution of problems (i.e., training and test sequences contain
different molecules). We use separate test and training distributions to ensure that we
optimize the training sequence for learning of mappings among the visual features of
the representations, rather than for memorization of translations for specific molecules.

In our prior work [38], we used data from novice undergraduate students in a
chemistry course to develop the cognitive model. We then used a modified hill climb
search algorithm to find an appropriate training sequence for thatmodel. Next, we
compared this sequence to an expert-generated sequence in an experiment with par-
ticipants from MTurk. Results showed that the machine-learned sequence yielded
significantly higher gains in perceptual fluency than the expert-generated sequence.

3 Research Questions

While our prior work showed promising findings for MTurk participants, it remains an
open question whether these benefits generalize to low-performing chemistry students.
The MTurk participants in our prior study matched our target population because they
had low prior knowledge about chemistry and little or no experience with the visual
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representations. However, their main motivation for participating in the study was to
earn money, rather than to learn chemistry. Further, the MTurk study was not con-
ducted in an educational setting. Hence, we address the following open questions:

Research question 1: Does the machine-learned sequence yield higher gains in per-
ceptual fluency than an expert-generated sequence for chemistry students when
embedded in instructional materials used in an undergraduate course?

Research question 2: Does the effectiveness of the machine-learned sequence depend
on students’ prior knowledge?

4 Methods

We address these questions in an experiment that compared the machine-learned
sequence to an expert-generated sequence with chemistry undergraduate students with
varying levels of prior knowledge enrolled in a chemistry course.

4.1 Participants

We conducted the experiment in a 300-level introductory chemistry course for
undergraduates. While the course is open to freshmen and has a prerequisite of students
having completed at least one 100-level chemistry course, many students enroll as
seniors and have not taken chemistry since their freshman year. Hence, students have
highly variable prior knowledge levels. Students received the perceptual-fluency
training as a homework assignment with an intelligent tutoring system (ITS) (see
Sect. 4.2). Forty students completed the assignment. Two students were excluded
because they were statistical outliers on a pretest or posttest (see Sect. 4.4), yielding
N = 38 students.

4.2 Chem Tutor: An ITS for Undergraduate Chemistry

The chemistry course used the Chem Tutor system for homework. Chem Tutor is an
ITS that provides complex problems with individualized step-by-step guidance [4, 39].
Chem Tutor provides interactive instruction that introduces students to how visuals
show chemistry concepts (see Fig. 3). In the assignment we used for this experiment,
students received four instructional activities prior to the perceptual-fluency training.

The perceptual-fluency training of the assignment was structured as follows. First,
students watched a 3-min video explaining that they would receive a large number of
single-step problems in a row. The video explained that these problems served to train
their perceptual fluency in quickly translating among visuals. Students were instructed
not to overthink their answer but to intuitively decide if the two visuals showed the
same molecule or not. Further, they were instructed that they would first receive a
sequence of problems without feedback (i.e., pretest), then a sequence of problems with
feedback (i.e., training), and finally problems without feedback (i.e., posttest).
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4.3 Experimental Design

Students were randomly assigned to an expert-generated sequence or a machine-
learned sequence that we used in the MTurk study [38]. Each sequence had sixty
problems. To control for potential response biases that could affect learning, the
number of problems that showed visuals of the same molecules was the same for both
sequences.

The expert-generated sequence was created by a researcher with a decade of
experience with perceptual-fluency trainings, using the principles that have been
established by prior research on perceptual-fluency trainings we reviewed above.
Specifically, problems were sequenced so they would draw attention to relevant visual
features. To this end, consecutive problems often repeated one visual while changing
the second visual. For example, if one problem presented visuals that showed different
molecules (e.g., in the left of Fig. 2, the Lewis structure has more carbon atoms and the
wrong bond order), the next problem might present visuals that showed the same
molecules (e.g., the right of Fig. 2). To create such sequences, we randomly set the
length of the subsequence that retained one visual to be 1–4 problems (i.e., either the
first, second, third, or fourth problem would present visuals showing the same mole-
cule). Then, we systematically varied visual features that play a role in chemistry
learning, as determined by our prior research with novice students and chemistry
experts [4, 40].

The machine-learned sequence was constructed using the machine-teaching
approach described above. A qualitative inspection of the sequence reveals several
differences to the expert-generated sequence that are worth highlighting. First, it does
not repeat visuals across consecutive problems. Second, it contains problems that can
be solved purely based on knowing which atoms the letters and colors in Lewis
structures and space-filling models stand for; which is not one of the visual features the
expert-generated sequence systematically varied. Third, it contains problems that can
be solved by simply counting the number of atoms in the visuals; which is also not a
visual feature that the expert-generated sequence aimed to draw attention to.

Fig. 3. Example sense-making activity in Chem Tutor.
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4.4 Measures

To assess students’ gains in perceptual fluency, we used the same pretest and posttest as
in our prior MTurk study [38]. As mentioned, pretest, training, and posttest problems
were drawn from separate distributions to ensure that we assess learning of mappings
among the visual features of the representations and not of memorization of translations
between visuals of specific molecules. For brevity, the pretest contained only 20
problems; the posttest contained 40 problems. Students received no feedback on the test
problems. Because perceptual fluency describes students’ efficiency in seeing mean-
ingful information in visuals, we computed efficiency scores for each test. Following
prior work on efficiency measures [41], we computed perceptual-fluency scores as:

perceptual - fluency score =
Z average correct responsesð Þ � Z average time per problemð Þp

2
ð1Þ

Further, to test if the effect of sequence depends on students’ prior knowledge, we
used the logs from the four interactive instruction activities that students completed
prior to the perceptual-fluency problems. We computed prior-knowledge scores as the
number of steps students answered correctly on the first attempt. Because the
instruction activities ask students to answer questions about chemistry concepts based
on the visuals, this measure assesses students’ knowledge about how the visuals show
concepts. We treated prior knowledge as a continuous variable in all analyses.

4.5 Procedure

Students were assigned to the Chem Tutor activities as homework in the second week
of the semester, including the interactive instruction, pretest, perceptual-fluency
training, and posttest. Students were given seven days to complete the assignment
online.

5 Results

In the following analyses, we report p. η2 effect sizes. Following Cohen [42], we
consider p. η2 of .01 to be a small effect, .06 a medium, and .14 a large effect.

5.1 Prior Checks

First, we checked for learning gains using repeated measures ANOVAs with pretest and
posttest as dependent measures. Results showed large significant gains in perceptual
fluency from the pretest to the posttest, F(1,36) = 8.762, p = .005, p. η2 = .196.

Second, a multivariate ANOVA showed no significant differences between condi-
tions on the perceptual-fluency pretest or prior knowledge on Chem Tutor’s interactive
instruction activities (Fs < 1). Further, there were no differences between conditions in
terms of how much time students spent on the perceptual-fluency training (F < 1).
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5.2 Effects of Sequence

To test if the machine-learned sequence yielded higher gains in perceptual fluency than
an expert-generated sequence (research question 1), we used an ANCOVA model with
condition as independent factor, perceptual-fluency pretest and prior knowledge as
covariates, and perceptual-fluency posttest as dependent measure. To test if the effects
depend on students’ prior knowledge (research question 2), we added an interaction
between condition and prior knowledge to the model. In line with prior research on
aptitude-treatment interactions [43], we did not dichotomize prior knowledge but
modeled the interaction between condition and the continuous prior-knowledge
variable.

Results showed a medium-sized significant main effect of condition, F
(1,33) = 4.699, p = .037, p. η2 = .125, such that the machine-learned sequence yielded
higher gains in perceptual fluency than the expert-generated sequence. The main effect
was qualified by a medium-sized significant interaction of condition with prior
knowledge, F(1, 33) = 4.788, p = .036, p. η2 = .127. As shown in Fig. 4, the machine-
generated sequence was more effective for students with lower prior knowledge, but the
expert-generated sequence was more effective for students with higher prior
knowledge.

Fig. 4. Effect of machine-learned (red-solid) vs expert-generated (blue-dashed) sequence. The
y-axis shows pre-post gains in perceptual-fluency scores based on the efficiency measure in
Eq. (1). The x-axis shows prior knowledge. Error bars show standard errors of the mean. (Color
figure online)
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6 Discussion

Our goal was to investigate if a machine-learning approach enhances the effectiveness
of perceptual-fluency trainings for low-performing students in a realistic educational
context. We drew on our prior work on a machine-learning approach that was not
subject to a potential blind spot bias due to experts’ perceptual fluency in seeing
meaning in visuals. Instead, it used a bottom-up approach to machine-learn a sequence
of visuals based on data from novice chemistry students. Our prior work had estab-
lished the effectiveness of this sequence for MTurk participants, who were not repre-
sentative of students in a realistic educational context. The present findings replicate
this effect in an undergraduate chemistry course and make several novel contributions.

First, our results show that the machine-learned sequence yield higher gains in
perceptual fluency than an expert-generated sequence for students with lower prior
knowledge. This finding shows that our machine-learning approach is an effective
method for developing perceptual-fluency trainings that are attuned to the needs of
students whose needs may not be obvious to instructional designers.

Second, our experiment makes new contributions to the perceptual fluency litera-
ture. In contrast to prior research, our findings suggest that perceptual-fluency trainings
can be effective for students with low prior knowledge, but that these students require
different types of such trainings. Our qualitative comparison of the machine-learned
and expert-generated sequences suggests that students with low prior knowledge may
benefit from sequences that draw attention to visual features that may seem obvious to
experts, such as the mapping between letters and colors. Given that students in our
experiment likely had some exposure to the visuals in prior chemistry courses, we think
it is unlikely that they did not know that these features are important. Rather, they may
not have been efficient at perceiving these features. Further, the machine-learned
sequence did not repeat visuals across consecutive problems, whereas the expert-
generated sequence did. Such repetitions assume that students recall the visuals from
previous problems, which is cognitively demanding. Hence, students with low prior
knowledge may benefit more from sequences that reduce cognitive load.

Third, we found that the expert-generated sequence is more effective for students
with high prior knowledge. This finding replicates prior research on the effectiveness of
expert-generated sequences for advanced students. Anew contribution of our findings is
that we found that students’ performance on prior instructional activities with visuals
predicts if they have the prerequisite knowledge to benefit from an expert-generated
sequence or if they should receive a sequence that was machine-learned based on data
from novice students to prevent expert blind spot biases.

Our findings should be interpreted in the context of the following limitations. First,
we focused on a specific set of visuals in chemistry. While we believe that the role of
perceptual fluency in chemistry is representative of other STEM domains that rely
heavily on visuals, future research should test if our findings generalize to other
domains. Second, we did not contrast the characteristics of machine-learned and expert-
generated sequences that may account for our results. For example, we did not test if
the repetition of visual representations across problems is effective for students with
high vs. low prior knowledge. Yet, our findings provide first indications that these
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characteristics may affect the acquisition of perceptual fluency, which can be system-
ically tested in future research. Third, because our sample size was relatively small, it is
possible that additional smaller effects remained undetected. Finally, we assessed gains
of perceptual fluency but not learning of content knowledge. Hence, future research
should test whether gains in perceptual fluency for low-performing students translates
into an enhanced ability to use the visual representations to learn content knowledge.

In sum, our experiment shows that a bottom-up approach to learn a sequence of
visuals for perceptual-fluency trainings can help overcome potential biases resulting
from an expert blind spot on the part of instructional designers. Such sequences are
particularly effective for students with low prior knowledge. Further, our research
provides new directions for future research to systematically investigate which char-
acteristics enhance the acquisition of perceptual fluency for students with low prior
knowledge.
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