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ABSTRACT 

ANIMATE, an interactive, computer animation-based tutor, has been developed as part of an 

ongoing test of a theory of word problem comprehension. Tutor feedback is unobtrusive and 

interpretive: Unexpected behavior in the equation-driven animated situation highlights equation 

errors which the student resolves through iterative debugging. The responsibility for learning, 

goal-setting, and diagnosis is placed on the student. Experimental controls (n=96) with Motion 

problems show improvement cannot be solely attributed to practice, computer use, or use of the 

situation-based method. Concurrent think aloud protocols of students (n=7) solving Motion, 

Work, and Investment problems over two days (in a pretest-posttest design) uncover specific 

changes that underlie these improvements. ANIMATE is an effective problem-solving aid, and 

there is transfer of learning. Problems with impossible situations were acknowledged by median 

level subjects (posttest scores between 77% and 85%), but solved blindly by high-level subjects 

(posttest scores >= 95%), suggesting an automaticity-controlled processing dichotomy. On day 

2, subjects spent more time reviewing problem texts and correcting flawed expressions. They 

developed self-directed debugging skills without relying on tutor feedback--behaviors 

reminiscent of expert problem solving in many domains. The system is unintelligent by ITS 
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standards but communicates knowledge to the student, helping them teach themselves 

approaches for mathematics problem solving. 
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 In the design of a learning environment, the central issues are to determine what to tutor 

and how. The what of tutoring addresses both selection of the content area and the level at which 

information in the content area will be presented. The how specifies the pedagogical approach -- 

the manner in which the student will interact with the tutor. For environments which support 

mathematics learning, the system must, in particular, teach students to use formal representations 

that model situations which are often presented informally, e.g., in a story format. This chapter 

presents research on the design of a learning environment, theoretical work on the 

comprehension of word algebra problems, and empirical results showing changes in students' 

problem solving performances and methods. Great gains in performance scores and important 

changes in students' mathematical reasoning are shown to occur after training with a learning 

environment which provides little in the way of knowledge-based guidance. These results seem 

dependent upon two factors: the ability of the tutor to ground the mathematics it teaches in a 

representation that is familiar and meaningful to the student; and placing the student in a learning 

context where exploration is encouraged but not unbridled.  

 ANIMATE is a learning environment built to support introductory word algebra problem 

solving. It facilitates within each student development of solution-enabling mental 

representations and strategies. This is done by helping students to think about the situations 

described by word problems and to explicitly address the means by which these situations can be 
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formally modelled (cf. White & Frederiksen, 1990). In this view, the comprehension aspects of 

word algebra problem solving are central: the way problem information is represented; the 

integration of additional knowledge -- inferences and elaborations -- that make a story problem 

coherent; and the nature of the formal expressions that describe that knowledge and produce a 

quantitative solution.  

 The pedagogical view -- the how -- embodied within ANIMATE is in contrast to the 

typical approach of ITSs, whereby one sets out to impart to the student, through practice, the 

condition-action rule-like behavior extracted from experts and stored in the system's expert 

module (Anderson, 1988). ANIMATE's didactic approach is to engage the student and treat 

learning as a constructive process (Resnick, 1989). In this context the student must exercise goal-

setting and strategy-selection abilities, and apply self-monitoring and knowledge organization 

skills (cf. Scardamalia, Bereiter, McLean, Swallow, & Woodruff, 1989). The environment is 

student-centered. That is, ANIMATE provides the structures which enable students to use their 

intelligence and knowledge, but it does not provide any intelligence to guide the learning. It is 

the student, not the tutor, that sets the goals and evaluates the progress made toward these goals.  

 ANIMATE does not try to understand in any deep way the student’s actions, or give 

intelligent or remedial feedback; in fact it cannot, possessing no domain expert module, no 

knowledge of the problems being solved, and no student model. To bring about the intended 

learning, the tutor presents each solution attempt to the student in a way that allows the student to 

evaluate his or her own performance -- in the form of a simple computer animation. The 

feedback supplied by the tutor is not evaluative and must be interpreted by the student. Thus, the 

student is an active participant, in fact the central participant, in the interaction, controlling not 

only the problem-solving process, but solution assessment, error diagnosis and recovery. Such a 

system is empowering to the students who use it since they are given the opportunity to approach 

each problem in their own style and pace, and to assess their own performance (Nathan, 1990). 
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As will be shown, this pedagogical approach also supports the learning of some principles of 

problem-solving often exhibited by expert problem solvers in a variety of domains. The tutoring 

approach presented here is a general one. It has been applied to word algebra problem solving 

because this domain has some special characteristics: the integrated nature of these problems 

draws on reading and language comprehension skills as well as ones' knowledge of formal 

mathematics.  

Learning Mathematics with ANIMATE 

 Word problem-solving performance depends upon reading comprehension skills. 

Recently, an analysis by Nathan (1991; Nathan, Kintsch, & Young, in press) showed this in a 

dramatic way. Relations that were unstated in the original problem texts yet which were needed 

for a solution proved to be the largest sources of solution errors. The difficulty arises because 

these relations have to be inferred by the students. The inference-making process is taxing and 

translation of these inferences into mathematical expressions is error-prone. Of the four hundred 

and eight classifiable pretest errors made by the ninety-six students who participated in a recent 

word algebra problem solving study, 258 errors (about 63%) were labelled as these inference-

based errors. The frequency of these errors was significantly greater than that of any other class 

of errors at the 95% level (Nathan et al., in press). Several other studies have similarly identified 

language comprehension as a critical component to word problem solving (Carpenter, Corbitt, 

Kepner, Lindquist, & Reys, 1980 ; Cummins, Kintsch, Reusser, & Weimer, 1988; DeCorte, 

Verschaffel, & DeWin, 1985; Lewis & Mayer, 1987). 

 ANIMATE was designed to test a theory of word algebra problem comprehension 

(Nathan et al., in press). The critical feature of this model is that the mental representations of the 

semantics of a problem text (the textbase) and the underlying problem situation (the situation 

model) must be linked to the student's knowledge of the mathematics in order to guide selection 
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of the proper problem-solving strategies. Solution attempts, specified algebraically, can be 

evaluated if the mathematics has meaning for the student and is not simply a string of abstract 

symbols. By grounding the mathematical symbols and expressions in a meaningful depiction of 

the problem situation, the student can interpret the mathematics situationally. The tutor does this 

explicitly, using computer animation. Students constructs algebraic expressions and a simple 

representation of the situation causally-linked to the mathematics. The validity of the 

mathematics is assessed by "Running" the equation-driven animation. Unexpected behaviors in 

the animation highlight equation errors which the student resolves through iterative debugging. 

Assuming the student understands the situation correctly, search for algebraic errors is 

constrained by the manner in which the animation deviates from the student's situation model.  

 Figures 1 through 4 show a subject producing a solution for a typical Work problem. 

Figure 1 contains the problem statement and the initial solution attempt. Several errors are 

present and they are removed successively. In Figure 1, Tom leaves before Huck which is 

counter to the problem situation presented in the text. In Protocol 1 Subject 6 hypothesizes that 

the Time equation shown in bubbles and labelled arcs in the lower right hand corner of Figure 1, 

is flawed. 
 

 

Protocol 1 
[Initial formation of the equation] 
And, uh, the time, let me see, what we know about the time is that if Tom arrives 
one hour late from fishing, so we can ... Let's see, [Huck starts] an hour early, 
which meant that [Tom] ... Now if Tom arrives one hour late, so it would have to 
be a negative 1.... 
[After running the animation] 
 ... He [Tom] had an extra hour to [paint], so we'll say that this is a plus 1. 
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Work Problem 

Huck and Tom agree to paint a fence. Tom can paint the entire fence in two 
hours while it takes Huck four hours. If Tom arrives one hour late from fishing, 
how long will it take the two boys to complete the job? (Problem text adapted 
from Hall, 1990). 

Figure 1. Subject 6's initial solution to the Work problem in the ANIMATE learning 
environment. Tom starts first while Huck waits one hour. 

 

By changing the minus one to a plus one, the relative starting times of the two characters in the 

animation is now in accord with the original problem statement, though other errors still exist. 

As Figure 2 shows, Huck works too quickly. Subject 6 reasons in Protocol 2, 
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Protocol 2 
[After running the animation:] 
That seems to be moving up fast ... So hours can't, um, and then, okay, so it's four 
over one so it would be a quarter? Okay. All right. Rate, R1 is a quarter, T is T1, 
uh .... R [2] is a half ... 
 

 

 

Figure 2. Having corrected the Time equation Subject 6 sees that the Rate values are too high. 
Huck takes four hours to paint the fence, but is 75% done after twelve minutes. 
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Figure 3 shows the current state of the solution and its manifestation after correcting (inverting) 

the work rates of the two characters. The animation proceeds nicely, but it continues indefinitely, 

leaving the two characters to repaint sections of the fence that have been already painted.  

 

Figure 3. With no equation relating Job variables, J1 and J2 (the amount of work done), the 
characters continue to paint indefinitely. 

 

This is because an important formal constraint has been omitted from the solution; one which 

relates the amount of work done by Character 1, J1, to the work done by Character 2, J2. Subject 

6 decides they must be related. He interprets the phrase "complete the job together," as meaning 

that both characters paint the same fence. Analytically, Subject 6 represents "complete the job 
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together,"  by equating the amount of work performed by each character, J1 and J2. Subject 6 

enters, 

 

The tutor reflects this algebraic constraint by stopping the animation when the amount of work 

performed by the two characters is equal. This event is shown in Figure 4.  

 

Figure 4. Given the constraint J1=J2, the animation stops when the amount of work performed 
by the two characters is equal. The proper constraint (see text in Figure 1) is  J1+J2=1. 

 

 So far this interaction has pointed out how students resolve flaws in their formal 

specifications of the solution. But, interactions with ANIMATE can also help students identify 



IMPROVING MATHEMATICAL REASONING 

 

9 
problems in their analysis of a situation. Concluding music indicates when the animation is done 

running, but it is apparent in Figure 4 that the fence is not yet completed.The current solution 

specifies a situation different than the one stated. To Subject  6, the misspecification is subtle: If 

both characters do the same job, the two should be equated. The meters showing the "proportion 

of work done" for each character help in diagnosing the error since the two numbers do not add 

up to one complete fence. When this is finally noticed, it becomes clear that J1 and J2 must sum 

to one, a single fence.  

 From these examples one can see how this technologically-simple learning environment 

helps students to construct expressions, and identify and rectify errors in their solutions for word 

problems. The situation-based feedback helps students to see the implications of the equations. 

The students are then encouraged to reason about how the mathematics can model the intended 

situation. That subjects can do this form of problem solving has been shown. Next the learning 

that occurs from this form of instruction is addressed. 

 Early Empirical Results with ANIMATE. Engaging in this form of reasoning has some 

important, lasting benefits for students learning to solve word algebra problems. A brief review 

of the results of a pretest-posttest, control group design show some of the strengths and 

limitations of this type of learning environment (Nathan, 1991; Nathan et al., in press). 

 Ninety-six subjects were randomly assigned to one of five treatments: the Animation 

group (with 24 subjects), Stopping-Condition group (with 14 subjects), Network group (with 14 

subjects), Situation-Only group (with 13 subjects), and the Equation or control group (with 31 

subjects). Those in the Network, Stopping-Condition, Situation-Only, and Animation groups 

used different learning environments during the training which ran on Apple™ Macintosh 

computers, distributed one to each subject.  
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 The several learning environments varied in functionality. ANIMATE 1.0 was used by 

the Animation treatment group. It is similar to the tutor shown in Figures 1 through 4 above, but 

it is limited to Motion problems solved by the equations Distance = Rate X Time (Figure 5).  

Motion Problem 

A train travels west at fifty-five miles per hour. Another train leaves on 
a parallel course one hour later and travels west at eighty miles per hour. 
How far will the second train travel when it overtakes the first train? 

 

 

Figure 5. Motion problem text and a screen dump from ANIMATE (in progress).  
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 The Stopping-Condition group used a tutor closest in functionality to ANIMATE 1.0. 

Subjects set up an equation network and a situation, just as Animation subjects did, but were not 

able to "run" an animation in order to receive situation-based feedback on their equations. Their 

only feedback was for the algebraic self-consistency of the network, which was available to all 

computer users. The Network-Only tutor was identical to the Stopping-Condition tutor except 

students set up no situation to accompany their equations. The Situation-Only tutor was similar 

to the ANIMATE 1.0 tutor, but this was not driven by an algebraic formalism. Subjects set up 

and ran the situation-based animation where the starting and ending times and speeds of the 

characters were specified as part of each character's profile. Subjects using this tutor were able to 

direct the same animation behavior as those using the ANIMATE 1.0 system, but they were not 

encouraged to tie this behavior to mathematical principles. The Equation group used no 

computer tutor and performed all training tasks using paper and pencil. This group controlled for 

effects of reviewing algebra and a repeated exposure to the experimental tasks. 

 The Network-Only and Stopping-Condition tutors are non-animation tutors, while 

ANIMATE 1.0 and the Situation-Only tutor are animation tutors. ANIMATE 1.0, the Stopping-

Condition tutor, and the Situation-Only tutor are (differing levels of) situation-based tutors. The 

four "tutor" conditions -- Animation, Stopping-Condition, Situation-Only, and Network -- served 

to tease apart effects due to different aspects of the full tutor. The differences are shown in Table 

1. 
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TABLE 1 

Comparative functionality of the tutors used in Nathan (1991) 

 

  

 Error Analyses. As mentioned earlier, most pretest errors were due to subjects' poor 

translation and inferencing abilities. After training, those subjects who used ANIMATE 

produced the least number of these inference-based errors in the posttest. Subjects using the 

other situation-based tutors -- Stopping-Condition and Situation-Only -- were next in line, while 

frequency of these errors for Network and equation users actually increased. 

 The ability to make inferences from a text is said to tap into the theoretical construct of a 

person's situation model (e.g., Kintsch, 1986). This knowledge structure represents the "deep 

structure," or gist of a text, and links text information to the reader's long term knowledge base. 

By accessing this, subjects activate associated knowledge which helps them elaborate and draw 

the inferences needed to make the story more coherent and the solution more complete. Using 

any of the situation-based tutors facilitates these important memory and reasoning processes, but 

ANIMATE, which explicitly links the mathematics to the situation, helps most of all. 

 Problem-solving Performances. Test performance and improvement is shown graphically 

in Figure 6, where Raw score is plotted against time of test for the five experimental conditions. 

A highly significant main effect of time of test (pretest versus posttest) was found, indicating 

 

 

Tutor 

Network 

formalism 

Link situation 

to network 

Set up and run 

animation  

ANIMATE 1.0 • • • 
Stopping-Condition • •  
Network-Only •   
Situation-Only   • 



IMPROVING MATHEMATICAL REASONING 

 

13 
that, overall, subjects improved from pretest to posttest, F(1,91)=80.25, p<.0001, MS=10.97. A 

significant interaction of time of test with treatment (the between-subjects variable) was found, 

F(4,91)=5.56, p<.001, MS=.76. This indicates that the improvement is reliably different for the 

five forms of training. A Duncan's Multiple-Range post hoc test (Duncan, 1955) comparing test 

improvement for each treatment shows that ANIMATE 1.0 users improved significantly more 

than subjects in all of the other groups (MS=.14, α=5%). No other reliable group differences 

were found. At posttest time the Animation group emerged with the highest mean performance at 

the 1% level (MS=.31). Training task performance results were in line with the posttest results. 
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Figure 6. Pretest and posttest scores for all treatments. The Animation group used ANIMATE 
1.0. A score of 4 is perfect performance. 
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 The group that experienced training with ANIMATE exhibited a superior overall posttest 

score, with no advantage at pretest, and superior test improvement. The different learning 

environments were designed to ensure that each experimental group received incrementally less 

support in the problem-solving process. These experimental controls show that the improvement 

of ANIMATE 1.0 users cannot be solely attributed to algebra practice, use of a computer tutor, 

or use of the situation-based method with no explicit link to the mathematical formalism. It 

appears that coupling the mathematical expressions to a concrete depiction of the situation is 

necessary to give ANIMATE 1.0 users a measurable boost over the other subjects. 

What ANIMATE Users Actually Learn 

 Results with ANIMATE 1.0 suggest that providing a situation-based interpretation of 

algebraic expressions helps students solve problems. This gives a very gross account of the 

learning that takes place. It does not really concern itself with how students actually use  

ANIMATE, or the extent to which animation-based feedback helps students understand the 

algebraic concepts presented. What is the form of the learning and how does it produce these 

reliable gains in problem-solving performance? From the above experiment it is clear that 

ANIMATE users construct with the greatest accuracy certain inference-based relations. Do 

ANIMATE users simply make less errors? Are their errors more benign? To address these 

questions one needs to identify the aspects of the system that are actually used by students and 

the specific mechanisms underlying these performance improvements. A process-level 

description of students' use of ANIMATE during problem-solving may begin to address these 

questions and provide us with a more complete description of the learning process that takes 

place from interactions with the tutor. This description is the goal of the following experiment. 
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 The Expanded Functionality of ANIMATE 2.0. The second generation of the ANIMATE 

learning environment supports word algebra problem solving in multiple scenarios (Figure 7) 

and includes Motion (Figure 5), Work (Figures 1 through 4) and Investment problems (Figure 8).  
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 Process-level Description of ANIMATE Use. ANIMATE 2.0 was used by seven students 

to solve Motion, Work, and Investment word algebra problems during a pretest, training tasks 

and a posttest. This experiment did not employ a control group design. Subjects were run 

individually in two experimental sessions broken up by a two-day delay. They produced 

concurrent Think Aloud protocols of their problem-solving processes in a manner consistent with 

Ericsson & Simon (1984). In addition to the verbal reports, computer protocols were collected by 

the enhanced tutoring environment for every mouse and keyboard entry, through use of the 

ProtoTymer™ stack (Miller & Stone, 1989). Process-level descriptions were made by combining 

these protocols to obtain detailed descriptions of subjects' specific interactions with the 

ANIMATE 2.0 system. 
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Figure 7. The start-up screen of ANIMATE 2.0. 

 

 On Day 1, each subject took a pretest. The tutor was then introduced as part of a general 

algebra review. Subjects next solved a set of training tasks using the tutor, with minimal 

intervention from the experimenter. Upon completion, subjects were dismissed. Each subject 

arrived approximately 48 hours later. With no review, the subject set about solving a new set of 

training tasks comparable to those presented on Day 1 (the order of the tasks was 

counterbalanced between subjects). Upon completion of these tasks, the tutor was removed and 

subjects solved a series of familiar and novel (i.e., transfer) problems as a final posttest.  

 Group Performance Improvement. The individual subjects all experienced improvement 

from pretest to posttest, although the magnitude of this differed widely. This improvement is 

attributable to both the review of algebra and the practice gained while working with the 

ANIMATE 2.0 environment. These results are shown in Table 2 as error rates (1- the proportion 

correct). Average error rates for the tests and training tasks are depicted graphically in Figure 9. 

 



IMPROVING MATHEMATICAL REASONING 

 

18 
TABLE 2 

Error rates for ANIMATE 2.0 users 

Subject Pretest Day 1 
Training 

Day 2 
Training 

Posttest 
(Overall) 

Posttest 
(Familiar) 

Posttest 
(Novel) 

1 .13 .08 .08 0 0 0 
2 .3 0 0 .05 .08 0 
3 .56 .17 0 .4 .5 .25 
4 .3 .08 .08 .22 .25 .17 
5 .94 .17 .08 .45 .33 .63 
6 .75 0 0 .2 .25 .13 
7 .5 0 0 .15 .25 0 

Average .55 .07 .04 .21 .24 .17 
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Investment Problem 

Suppose seven hundred and fifty dollars is invested at an interest rate of 
five percent, to be compounded annually. What amount will be in the 
account at the end of the second year? 

 

 

Figure 8. Solving an Investment problem with ANIMATE 2.0. 



IMPROVING MATHEMATICAL REASONING 

 

20 

Figure 9. Average proportion of errors for ANIMATE 2.0 users as a function trial. Trial 1 
represents mean pretest performance, Trial 2 is the training performance on Day 1, Trial 3 is 
training on Day 2, and Trial 4 is the mean performance for all posttest problems. 

 

 Several things are apparent from these data. There is a dramatic decline in the proportion 

of errors made by subjects once they use ANIMATE. This improvement was maintained across 

the two-day delay (from Trial 2 to Trial 3). And there is a rise in the error rate when the learning 

environment is removed. Even with this rise, group performance improved significantly from 

45% correct at pretest to 79% correct (a 21% error rate) at posttest, t(6)=5.36, p<.002, MS=.5.  
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 ANIMATE as a problem-solving aid. The posttest not only robbed students of their 

problem-solving aid, it also included two novel problems, problems which had algebraic 

concepts which were not reviewed or practiced. Thus, a possible cause for the rise of errors at 

posttest time is that the test was simply more difficult than the training tasks. The last two 

columns of Table 2 show the posttest data reorganized. Familiar posttest problems -- Work, 

Motion, and Investment problems -- which received review and practice during the experiment, 

were as difficult as novel problems (the differences are not significant). Thus, it is the removal of 

the learning environment that leads to the slight rise in error rate at posttest time. 

  Impossible problems: Evidence of different approaches to problem-solving. Subjects 

also addressed two problems describing physically impossible situations which could 

nonetheless be modelled algebraically. These problems helped to further reveal the underlying 

processes which drove students' reasoning and problem solving. The first was the Mixture 

problem shown below. 

Mixture Problem 

A grocer mixes peanuts priced at one dollar and sixty-five cents per 
pound with almonds priced at two dollars and ten cents per pound. She 
wants thirty pounds of the mixture to be worth one dollar and fifty-three 
cents per pound. How many pounds of each must the grocer include in 
the mixture? 

The second was a Coin problem taken from Paige and Simon (1966).  

Coin Problem 

The number of quarters Ruth has is seven times the number of dimes 
she has. The value of the dimes exceeds the value of the quarters by two 
dollars and fifty cents. How many has she of each coin? 

 

Table 3 shows how subjects performed when they either solved an impossible problem as though 

it were an actual problem, or identified it as describing a physically unrealizable situation. A 

percentage score in Rows 1 and 2 indicates the score a subject received for his or her solution 
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attempt at solving, respectively, the Mixture and Coinage problems. Presence of the imp symbol, 

indicates that the problem was identified as "impossible" by a subject . Mean performance on 

these problems for each subject is provided (Row 3) along with the count of the number of times 

impossible problems were detected (Row 4). Performance on the impossible problems is 

compared with each subject's posttest performance (Row 5). 
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TABLE 3 

 
Mean performance on "impossible problems" and 

overall on posttest performance 

Subject No.  1 2 3 4 5 6 7 

Mixture 

performance 

100%  100%  100% imp* 50% imp* imp* 

Coinage 

performance 

100% 100% 50% 67% 25% 75% imp* 

Mean equation 

score 

 

100% 

 

100% 

 

75% 

 

67% 

 

38% 

 

75% 

 

N/A 

"Impossible" 

count 

0 0 0 1 0 1 2 

Posttest 

Performance 

100% 95% 65% 78% 50% 77% 85% 

* The imp symbol is used to reflect the fact that a subject labelled a problem as 

describing an impossible situation. 

 

 Examination of the verbal protocols of subjects shows that those students who did not 

detect the contradictory nature of the Mixture and Coinage problems used what Paige and Simon 

(1966) have termed a "direct" approach to problem solving. They did not reflect on "the bigger 

picture" of the situation as described. Rather, they delved right into the problem-solving process, 

set up the network and equations on paper and cranked out a solution. There were two occasions 
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where subjects (Subjects 3 and 5) detected and corrected situational inconsistencies within their 

equations; and many subjects made appropriate inferences and properly formulated them as 

algebraic expressions. Thus, there was much reasoning with respect to the problem situation. 

But, for these subjects, this reasoning did not uncover the illegitimacy of the problem situation. 

 Of those subjects who did recognize the impossible nature of the Mixture problem, two 

subjects (Subjects 4 and 6) used approaches which could be called highly situation- or auxiliary-

based. Subject 4 carefully considered the values presented and did not bother to set up any 

formal relations. Subject 6 set up the network formalism only after reflecting on the problem 

situation and determining that it was unrealistic. Only Subject 7 combined an equation-based and 

a situation-based approach as well as considering the specific values employed; and only this 

subject labelled both the Mixture and Coin problems as impossible. 

 The detection of irregularities in these problems was made by subjects who performed at 

the median level (Figure 10). These students also improved most in their test scores (Figure 11). 
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Figure 10. By ordering the subjects by posttest score it is apparent that median ranking subjects 
were the ones who detected the "impossible problems." 
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Figure 11. By ordering the subjects by test score improvement it is apparent that those subjects 
who improved most were most likely to detect the "impossible problems." 
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 One interpretation of these findings is that subjects highly adept at problem solving -- 

those with posttest scores at or above 95% correct performance (i.e., A students, Subjects 1 and 

2) -- were so confident of their solution-generating abilities that they saw no need and perhaps 

had no opportunity to step back and reflect on the problem at hand. Their problem-solving skills 

may be so honed and automatic that inspecting or interrupting them would require major effort 

(Ericsson & Simon, 1984; also see Shiffrin and Schneider, 1977). Consequently, these "top" 

students simply executed their well-practiced solutions. (A review of Table 2 reveals that the two 

subjects in the highest posttest group started out that way at pretest.) The poorest students -- 

those with posttest scores at or below the 65% level (D students, Subjects 3 and 5) -- approach 

problems with the intention of "getting through" them as best they can. Indeed, the scores for 

their mathematical solutions to these problems were below the mean.  

 The median group of subjects has  general competency in problem solving, yet they do 

not have their problem-solving procedures in the automatic state of the highest group. They still 

find it necessary to reflect upon a problem before posing a solution.   

 Impossible problems show that it may not always be possible to make competent problem 

solvers out of poor ones. It also demonstrates that certain forms of situation-based reasoning 

have their limitations. The high posttest subjects, for example, demonstrated some situation-

based reasoning within the problem-solving context, but this did not alert them to the absurdity of 

the larger situation described. Recognition that the problem met the necessary conditions for an 

algebraic solution seemed most critical. However, it was shown that situation-based reasoning 

with the "big picture" in mind, as demonstrated by median subjects, can be advantageous. 

 Changes in how time is spent. Total solution times did not differ greatly on average from 

Day 1 to Day 2. However, subjects allocated their total solution time somewhat differently over 

the two days. Subjects using ANIMATE 2.0 performed a variety of subtasks in order to produce 

an adequate formal specification of a word problem, and a situation-based verification. Six areas 



IMPROVING MATHEMATICAL REASONING 

 

27 
were specifically identified on which subjects spent time. These are: Setting up the algebraic 

Network;  setting up the animation; debugging the Network; running the animation (i.e., 

"checking" a solution attempt); reading the problem; and (for Motion problems only) specifying 

the stopping event for an animation. The relative amounts of time subjects spent on each of these 

tasks are shown in Figure 12 for Day 1 and Figure 13 for Day 2. 

 From training session 1 (Day 1) to session 2 (Day 2) subjects changed their problem-

solving behaviors and spent a greater proportion of their time reviewing the problem texts 

("Reading") and correcting initial solution attempts ("Debugging"). Debugging is taken here to 

mean alteration of a part of the solution network following execution of the animation (i.e., 

feedback). Setting up the animation is inherently fast, as is establishing the stopping event for the 

animation1. It could be argued that the time spent running the animation might also be included 

in the debugging category, as subjects used it to test their solutions and diagnose problems. 

Clearly, much of the reasoning that leads to error detection and correction occurs during 

animation execution. However, the more conservative stance is taken where running is 

considered separately. 

 Reading is not the major temporal focus of subjects. The texts are only a few lines long; 

and, though they may be far more dense propositionally than regular stories of this length (cf. 

Nathan, 1988), their format is familiar or quickly learned. Subjects seem to know where to go in 

the texts for information, with little serial scanning apparent in the protocols.  

                                                 
1 To establish the stop event subjects identified the algebraic relation which stopped the animation 

when it was true. The time allocation for establishing this is inappropriately weighted in Figures 12 and 13 since set 

up times for stop events of Work and Investment problems are necessarily zero. When one considers just Motion 

problems, stop events are found to play a larger part in the solution process although this step still occupies a smaller 

proportion of the solution time than setting up the network, running the animation, and debugging the network.  
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Figure 12. Proportion of time all subjects spend solving problems with ANIMATE 2.0 on Day 1 
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Figure 13. Proportion of time all subjects spend solving problems with ANIMATE 2.0 on Day 2 
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 Effectiveness of the Animation as Feedback. In addition to the way  subjects allocate 

their time when performing the above subtasks, it is valuable to note the frequency of two 

events: Reading the problem statement; and running the equation-driven animation. These serve 

as the main sources of outside information during a problem-solving session. Furthermore, the 

subject's goal while working within this learning environment is to match these two situational 

descriptions.  

  Data for the average number of runs and the average number of times subjects read each 

passage (Table 4) shows that subjects revisited the texts more often on Day 2. This may indicate 

the need to establish a closer link to the original scenario. Subjects conducted virtually the same 

number of runs from Day 1 to Day 2. Yet they apparently gleened more from each run over time. 

On Day 2 they spent more time debugging their solutions (Figure 13) and achieved a higher level 

of performance (Table 2 and Figure 7).  

 

TABLE 4 
 

Average number of times per problem subjects ran an animation 
and read a problem text during training 

Exposure # Runs/problem/subject # Reads/problem/subject 

Day 1 training 2.5 2 

Day 2 training 2.6 2.52 

 

 The animation as a source of feedback for students' formal expressions proved to be 

useful in problem solving. The data in Column 1 of Table 5 show the frequency with which 
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subjects used the animated feedback to make corrections. Debugging was exercised equally on 

Days 1 and 2. 

 Subjects' higher performances were not accompanied by drastically fewer errors in their 

initial formulations of a solution. What then lead to the observable improvements? The data in 

Column 2 of Table 5 suggest an interesting possibility. These data show the frequency with 

which subjects corrected their solution attempts at each trial without  use of animation-based 

feedback from the learning environment. These are times when subjects' changes were motivated 

by their own reasoning -- so-called "self-directed debugging." The increase shows that over time 

subjects took a greater responsibility in assessing and correcting their own errors. Perhaps this is 

because subjects could, as their understanding of algebraic expressions grew. 

 A startling and valuable finding is that self-directed debugging continued to be exercised 

at posttest time when the tutor was absent, indicating that subjects learned to debug the erroneous 

expressions they generated. This learned behavior would naturally support performance 

improvement from pretest to posttest. The rise in error rates from Day 2 training to the posttest 

can be explained by noting that without use of the feedback, there were no additional 

improvement from animation-driven corrections. Thus performance slipped. 
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TABLE 5 

 
Frequency of corrections to algebraic errors made with and 

without the use of animation-based feedback 
 

 Number of animation-
driven corrections  

("Debugging") 

Number of student-
motivated corrections  

("Self-directed debugging") 
Pretest (no tutor) N/A 0 
Day 1 training (w/ tutor) 22 3 
Day 2 training (w/ tutor) 21 10 
Posttest (no tutor) N/A 10 

 

 Limitations and Successes. ANIMATE 2.0 represents a further attempt at crystalizing an 

instructional method for word algebra problem comprehension.The learning environment has 

shown itself to be an effective problem-solving aid, and its benefits for some are long-lasting. In 

its current form, the preferred audience for the tutoring system is not the expert problem solver. 

This population does not need help and, as was evident with the impossible problems, they are 

unlikely to take on this problem solving method. Yet, all ANIMATE subjects showed steep 

improvement, even with a two-day hiatus.   

Conclusions 

 Performance tasks, control group learning environments, and verbal and computer 

protocols all help to identify the mechanisms which underlie changes in ANIMATE users' 

problem-solving behaviors. The experimental controls of the first study show that the greatest 

gains in performance inference-making occur when students are exposed to the ANIMATE 

learning environment which links situational and mathematical aspects of a problem. Reasoning 

about the referent situation as an effective way to solve these notorious problems. Protocols from 

the second study suggest that ANIMATE users tend to establish a closer link between the 



IMPROVING MATHEMATICAL REASONING 

 

32 
problem-solving process and the problem statement over time. Students do not learn to generate 

error-free solutions, but continue to make errors. These errors can be new learning opportunities 

since their correction can reinforce the target concepts (cf. Johnson, 1990). That students became 

proficient at correcting errors during training is flattering to the design of the learning 

environment. The equation-driven animation as a form of feedback proved to be highly effective. 

Students also routinely corrected expressions during training without the aid of the animation. 

Furthermore, they continued to do so at posttest time with no tutor present. This finding shows 

that some important conceptual learning about the problem-solving process took place among 

these students.  

  The changes in the problem-solving processes of ANIMATE users lead to problem-

solving behaviors reminiscent of experts. Skilled behavior in a variety of domains is often 

characterized by a substantial number of errors early in the process, which expert practitioners 

have learned to correct. In computer-based text editing, Card, Moran, and Newell (1983) show 

that skilled secretaries spent about one-quarter of their task time making and correcting errors. 

Professional mathematicians also make mistakes while performing routine manipulations in 

algebra (Lewis, 1981). Flawlessness is not what makes them experts. They know their flaws can 

be detected upon reexamination. In writing compositions, experts tend to write their initial ideas 

down, knowing they have not stated them perfectly the first time, and that they can later revise 

them (Scardamalia, Bereiter, & Steinbach, 1984). Novices, in contrast, tend to make a single pass 

over the information. This dichotomy is similar to the behavior of our students. Early on, 

students write expressions with little reflection or alteration of these initial attempts. From 

exposure to the ANIMATE environment, students develop methods for assessing their solutions 

without external feedback. Mathematics problem solving becomes a process of formulation and 

revision.  
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 The results are promising, but by no means do they suggest a miracle for mathematics 

education. They indicate that the development of global comprehension skills -- adherence to the 

original problem statement, consideration of the situation, interpretation of expressions and 

assessment of their validity -- are valuable to teach. And they are learnable in a setting whereby 

otherwise abstract expressions are grounded in situations relevant to the problem-solving 

process; and generation, testing and alteration of them is encouraged. In essence, these students 

teach themselves concepts in mathematics and approaches for mathematics problem solving in a 

technologically simple learning environment. The system may be unintelligent by ITS standards, 

but it communicates vital knowledge to the student. Necessarily, when problem solving with 

ANIMATE, the responsibility for learning, goal-setting, and diagnosis is placed on the student. It 

has been shown that students can take the initiative and valuable learning occurs in the process. 
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