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A tutoring approach is derived from a model of problem comprehension, based on
the van Dijk and Kintsch (1983; Kintsch, 1988) theory of discourse processing.
A problem statement is regarded as a text from which the student must glean proposi-
tional and situational information and make critical inferences. The competent stu-
dent must coordinate this information with known problem models so that formal
(i.e., algebraic) operations can be applied and exact solutions can be obtained. We
argue that this task is a highly reading-oriented one in which poor text comprehen-
sion and an inability to access relevant long-term knowledge lead to serious errors.
In particular, poor students often omit from their solutions or misspecify necessary
mathematical constraints that are based on reading inferences needed to describe
fully the problem situation. Furthermore, formal algebraic expressions are so ab-
stract that their meaning is often elusive; this contributes to mistranslations and mis-
interpretations. The competent approach is teachable, however.

We describe experimental results with ANIMATE, a learning environment that
knows nothing of the problem at hand or of the student’s actions. Subjects encouraged
to reason explicitly about the situations described in typical word problems consis-
tently performed as well as or better than those who were not, in both training and
transfer tasks. We conclude that, by using an environment that gives equations
situation-based meaning through computer animation, students learn to relate for-
mal expressions to the referent situations. This enhances problem comprehension
and gives a stronger representational base to the problem-solving process. A call
for evaluation methods beyond just algebra problem-solving performance is made.
The implications of this work for the design of future computer-based tutors and
other learning environments are also discussed.
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A better understanding of the psychological requirements for problem compre-
hension may alert us to students’ instructional needs and provide us with the func-
tional requirements for computer-based tutors. This article presents a theory of
word-problem comprehension based on research in the field of discourse process-
ing (e.g., Kintsch, 1988; van Dijk & Kintsch, 1983). The theory focuses on the
mental representations produced during reading comprehension. In solving word
arithmetic or word algebra problems, errors made by students can be viewed as
failures to produce the intended mental representations and failures to relate the
situation described in the problem statement to the formal expressions needed
to produce a quantitative (e.g., numeric) solution. Previous work has shown that
text complexity and comprehension failures are central to the difficulty of word
problems (Carpenter, Corbitt, Kepner, Lindquist, & Reys, 1980; Cummins,
Kintsch, Reusser, & Weimer, 1988; Kintsch & Greeno, 1985; Lewis & Mayer,
1987) and mathematics in general (Resnick, 1988). Indeed, empirical analyses
of how college students actually solve word algebra problems indicate that reason-
ing explicitly about the situation, and not the algebra per se, plays a crucial role
(Hall, Kibler, Wenger, & Truxaw, 1989). Here, our major theoretical claim is:
To comprehend a problem, the student must make a correspondence between the
formal equations and the student’s own informal understanding of the situation
described in the problem. A necessary assumption of our theory is that students
are capable of understanding the stories given and that they form an appropriate
situation model. We hypothesize that correspondence is teachable and describe
a computer tutoring system, ANIMATE (Nathan, Johl, Kintsch, & Lewis, 1989;
Nathan & Young, 1990), which embodies our theory. We present resuits of stu-
dents’ use of it when solving typical high-school-level and college-level algebra
word problems. This tutoring system facilitates the correspondence between the
situation and the formal equations by making their relation explicit through the
use of equation-driven computer animation. In doing so, it helps students to bet-
ter comprehend the problem and ultimately to improve their problem-solving per-
formance.

We begin by presenting a theory of word-problem comprehension, drawing
on earlier work in this area. The role of situation-based reasoning when solving
problems in formal domains (of central importance in our theory) is then dis-
cussed. The theory of problem comprehension, however, does not sufficiently
define how to teach students to solve word problems. For this, we need a theory
of computer-based instruction for word algebra problems, addressing the role
of student errors and system feedback during training. From this discussion, we
adopt a set of instructional principles that guide the design of ANIMATE, a com-
puter tutor. After illustrating how ANIMATE relies on our model of problem
comprehension, the functionality and features of the tutor are demonstrated by
way of a sample problem-solving session. We then present empirical results of
students’ use of the tutor in a laboratory setting as an indirect test of our theory
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of problem comprehension. The results obtained from students using ANIMATE
are compared with students operating under differing levels of experimental con-
trol. In this study, problem-solving performance is measured by students’ scores
on a variety of typical motion—distance (D) = rate (R) X time (7)—problems
before, during, and after training. Problem comprehension is evaluated by ex-
amining students’ errors and assessing students’ performance on some nontradi-
tional tasks such as writing a story problem from a set of algebraic constraints.
These preliminary results for the tutor group are encouraging. They are discussed
in terms of models of human problem solving, methods of problem-solving evalu-
ation, and the design of future learning environments.

A PSYCHOLOGICAL MODEL OF WORD-PROBLEM
SOLVING AND COMPREHENSION

A complete theory of problem solving must include the language comprehension
process, the resulting mental representations, the role of inferences and real-world
knowledge, and the necessary formal calculations for deriving a solution. Although
models of problem-solving behavior abound (e.g., Newell & Simon, 1972), few
studies (e.g., Bobrow, 1968; Simon, 1979) address the process by which solvers
comprehend problems, that is, how they digest problem information and access
the relevant real-world knowledge so they may then apply solution strategies to
a coherent problem representation. A significant component of a comprehension
model is how one’s mental representations of the problem situation inform and
help to constrain the formal expressions necessary for a solution (Greeno, 1989;
Singley, Anderson, Gevins, & Hoffman, 1989).

We outline a theory of word-problem comprehension, extending the work of
Kintsch and Greeno (1985), Reusser (1988), and Cummins et al. (1988). These
studies have shown that arithmetic-word-problem comprehension can be under-
stood within the framework of the general theory of discourse processing of van
Dijk and Kintsch (1983; Kintsch, 1988). Kintsch and Greeno theorized that, when
reading a problem statement, a propositional representation, termed the fextbase,
is formed, as with any other text, to capture the meaning of the passage. The
reader also forms a representation for the actions in a text, termed the situation
model (van Dijk & Kintsch, 1983).

Using a production-rule model, Kintsch and Greeno (1985) simulated the read-
ing behavior of young students solving arithmetic problems. Productions were
used to construct a representation of a word problem—a textbase and situation
model—and to select among possible problem-solving strategies. The situation
model for the problem-solving task was highly task specific, capturing the set
relations and arithmetic operations needed for solving the problem. They thus
termed this representation the problem schema and hypothesized that it subsumed
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the situational nature of the problem text. The arithmetic problems always con-
sisted of several sets of objects (e.g., marbles) specified in a certain way (e.g.,
Fred gave some to Joe). The simulation demonstrated that the problem-solv-
ing processes used by students could be reliably modeled by a computer pro-
gram. Later work by Cummins et al. (1988) showed that incorrect problem-
solving behavior could be simulated by introducing faults into the program. Of
the two classes of defects introduced —incorrect arithmetic algorithms and lin-
guistic deficiencies —language processing errors modeled students’ faulty behavior
best. Cummins et al. also showed that solution performance was associated with
the ability to recall the problem statements. Students who could correctly recall
the story textbases were more likely to produce correct solutions. Students who
incorrectly recalled problems apparently encoded a different problem textbase
than the one presented, which they often then solved correctly. This study sug-
gests that the development of an appropriate representation of the formal aspects
of the problem is highly dependent on language comprehension skills and the for-
mation of a correct textbase and situation model. This in turn affects word-problem-
solving performance. The study prescribes that instruction focus on language com-
prehension processes as well as on the mathematical aspects of word-problem
solving.

In the current discussion, we distinguish between a representation for events
(the situation model) and one that is constructed with formal relations in mind
(the problem model), teasing apart distinctions not made by Kintsch and Greeno
(1985). Processing algebra word problems is viewed here as similar to process-
ing arithmetic word problems. First, a propositional textbase is formed, just
as with any other text. This textbase is organized into a (qualitative) situation
model and mapped into a (quantitative) problem model that captures the algebraic
problem structure. A set of algebraic problem schemas (templates for organizing
problem-relevant information) provides the explicit, graphical cues to guide the
construction of these problem models. The problem schemas for word problems
commonly found in college algebra texts are described in the following section.
We then show how equations can be derived from the relations specified in a
problem schema using a method of constraint propagation. In our view, the process
of understanding and solving word problems involves three mutually constrain-
ing levels of representation that must be constructed by the student: (a) a represen-
tation of the textual input itself—the textbase, (b) a model of the situation conveyed
by the text in everyday terms —the so-called situation model, and (c) the formali-
zation of that situation—the problem model.

In the problems under consideration here, situation models are often based
on imagery, although a situation model may also be represented proposition-
ally, as has been found with users’ representations of computer processing tasks
(Mannes & Kintsch, 1991). In the tasks we have selected, computer animations
provide an effective way to characterize much of the content of the situation model
for a text. We illustrate this process with a single worked-out example.
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Generating a Propositional Representation
and a Situation Model

Problem 1: Distance-Rate~Time Word Problem
A plane leaves Denver and travels east at two hundred miles per hour. Three
hours later, a second plane leaves Denver on a parallel course and travels
east at two hundred fifty miles per hour. How long will it take the second
plane to overtake the first plane?

According to the theory, a reader extracts the propositional representation from
a problem. When reading Problem 1, a list of propositions is derived, as in van
Dijk and Kintsch (1983):

Propl LEAVE[PLANE1, DENVER, Timel]
Prop2 RATE[Propl, 200 mph]

Prop3 DIRECTION[Propl, EAST]

Prop4 LATER[Propl, Prop5, 3 HOURS]
Prop5 LEAVE[PLANE2, DENVER]
Prop6 DIRECTION|[Prop5, EAST]

Prop7 LOCATION[PropS, Prop8]

Prop8 PARALLEL[COURSE]

Prop9 RATE[Prop5, 250 mph]

Prop10 HOWLONGI(Propl1]

Propll OVERTAKE[PLANE2, PLANEI]

The top-level macroproposition for this text would be “PLANE2 overtakes
PLANE1” (Prop11), with propositions denoting such information as how fast the
planes are going and when they start subordinate to it.

The corresponding situation model consists of a representation of the two planes
speeding along a parallel course, capturing the moment when the second plane
passes the first. Such a representation involves details that may differ among read-
ers. We have no way of specifying these details, and there is no need to do so.
All we need to do is represent the essential, common parts of everyone’s situa-
tion model: one moving object overtaking another.

The situation model draws on a reader’s knowledge of the world to “fill in
the gaps” left by a sparse story. In the example text, nothing is said about the
relative distances the two planes will travel when “overtake” occurs, yet the situ-
ation model reveals that they will have flown equal distances at that point (van
Dijk & Kintsch, 1983; Weaver & Kintsch, 1987). Furthermore, the situation model
tends to present things in relative terms, qualitatively, without regard to the pre-
cise quantities often found in the textbase of a problem statement and needed in
a problem model (Nathan, 1988).

All this is no different from understanding a story. To understand a story
problem, the reader must have sufficient knowledge to understand the situation
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adequately and appropriate strategies to generate necessary inferences and elabo-
rations to make the story complete (van Dijk & Kintsch, 1983). This is the
case for many of the problems we consider here but not for all. For those prob-
lems where students lack a situational understanding (e.g., physics problems
that challenge students’ naive notions, as reported by McCloskey, 1983), we
have to teach this first. When there is situational understanding, it can help
provide the student with a solution-enabling algebraic interpretation for the problem
text. It does this by helping the student access and apply the real-world knowl-
edge associated with a situation when setting up the formal relations or problem
schema. The situation model further helps the student by providing situational
constraints, against which formal constraints may be checked (cf. Singley et al.,
1989).

An erroneous problem schema, as shown in the next section, violates or omits
certain aspects of a situation model. In terms of our theory, problem schema omis-
sions are expected to match information that is unstated in the text but necessary
for complete understanding of the situation. Violations often parallel miscom-
prehensions of the text or misapplication of algebraic principles. Along with the
textbase and situation model representations often attributed to readers, problem
solvers additionally must produce a representation of the problem structure that
includes relations among quantities in the problem. This problem schema is the
representational level at which students can apply formal calculation methods such
as algebra for generating verifiable solutions (Kintsch & Greeno, 1985; Reusser,
1988). The situation model can support detection and even correction of formal
problem-schema errors but only when correspondence between it and the problem
model representations is established.

Generating a Problem Model

In solving an algebra word problem, the psychological theory we have been de-
veloping maintains that a mathematical description must be developed that is con-
sistent with the reader’s situation model. Construction of such a description from
our example theoretically might go as follows: Prop2, from the prior list of propo-
sitions, specifies a relation between a distance and a time, thus eliciting in the
reader a distance-rate-time (D = R X T) schema labeled PLANEI] (see Figure
1). This schema has slots for distance (D), rate (R), and time (7): Prop2 is as-
signed to slot R, whereas Propl and Prop3 go into slots that help to further speci-
fy the problem situation. Prop9 initiates the construction of a second D = R X
T schema for PLANE2, fills the R slot with 250 mph, and assigns Prop5 through
Prop8 to the role of additional specifications. Prop4, because it relates the D =
R X T schemas of the two planes, is tagged as a supporting relation, one that
holds the relative starting times (“delay” information) of the two planes. Sup-
porting relations are a special kind of problem schema. They are not often found
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Prop11
D: miles -
Prop9
R: m/h
+
T: hours 3
Prop10 Prop4
PLANE 1| PLANE 2
Prop1 PropS
Prop3 Prop6
Prop?7
Prop8

FIGURE 1 A conceptual problem model for Problem 1 using the network method. The net-
work is labeled with propositions (e.g., Prop9) from the textbase of Problem 1 to show how
text comprehension supports problem model generation.

alone but are used to relate two or more independent schemas and tend to capture
more general relations (such as the notion of a “delay”) than do the problem-specific
schemas such as D = R X T.

Supporting relations can be based on aspects of a situation that are unstated
in the original text and so are absent from the reader’s textbase. When this is
s0, these relations need to be derived through an inference supported by the reader’s
general knowledge and situational understanding of the text (Singley et al., 1989).
These inferences make large demands on the reasoning and memory of a problem
solver (van Dijk & Kintsch, 1983). We thus come to the first explicit prediction
of our word-problem comprehension theory:

Prediction 1a: Because of the added cognitive demands of inference mak-
ing, readers will make inferences only when they seem necessary. Poor
problem solvers will tend to omit them from their representations, and so
they will omit the associated equations (supporting relations) from their so-
lutions to story problems. Problem solvers who reason situationally will
tend to include these inference-based equations.

Situation-based reasoning can produce the inferences necessary for understand-
ing a problem situation. A correspondence between the situation model and the
problem model constrains one’s representations to be faithful to both. This leads
to our second prediction:
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Prediction 1b: Initially poor problem solvers who have subsequently learned
to make an adequate situation model of the cover story and to link this repre-
sentation to their mathematical understanding will exhibit in their solution
protocols a marked decline in their misspecification of supporting relations.

Predictions 1a and 1b mark our initial attempts to specify students’ problem-
solving behavior within the framework of the problem comprehension model.
Together they make claims about what we expect to see in students’ initial solu-
tion protocols and how we expect them to change when a student would assume
our ideal, model-based reasoning approach. As we develop the theory more
fully, we refine and add to this set of predictions.

Returning to our example, the problem solver must realize that Prop10 of the
textbase deals with the travel time of Plane2, so it is assigned to slot T in the
PLANE2 D = R x T schema (indicating that the slot must be filled with a vari-
able or unknown). Propl1 requires that an inference be made regarding the state
of the planes at the point of overtake before it can be tied to a supporting rela-
tion. Thus, propositions in the textbase and inferences drawn from the situation
model aid the subject in constructing and instantiating (situation-specific) problem
schemas. This in turn organizes the propositions into solvable algebraic formal-
isms. Alternative ways of forming a solution-enabling problem schema are, of
course, possible (e.g., one may prefer a catch-up scenario that focuses on the
difference in rates of the two planes).

A simple graphical form, shown in Figure 1, acts as a correlate of the problem
model.! Each D = R x T schema is shown as three ovals, corresponding to the
D, R, and T slots, respectively, in a vertical arrangement. Ovals are connected
by line segments labeled with mathematical operators, such as “="and “+” (mul-
tiplication). For clarity in analyzing this example, the text propositions organized
by these schemas are written next to the ovals and/or lines to which they have
been assigned. Inside each oval, information derived from the text propositions
is shown. Line segments are labeled so that the lines and ovals can be read as
equations, either horizontally or vertically.

An algebraic representation for the word problem given before, along with
the corresponding propositions and inferences from which it is derived, would be:

Equations Propositions Inferences/Supporting Relations

D1 =200 x T1 1,2,3 —

D2 =250 x T2 5,6,9 -

T1 =T2 + 3 1, 4 “Later” as “+ 3,” because
PLANE?2 travels less time
than PLANEI1

ISee, for example, the verbal protocols that capture the problem-solving process of experts and
novices rectifying a faulty situation model of simple mechanics and geometry problems by relying
on their understanding of the problem model (Larkin, 1983; Schoenfeld, 1985).
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Equations Propositions Inferences/Supporting Relations

D1 = D2 5,6,7, 11 “Overtake” as “=,” because
this occurs when the two
planes have traveled equal
distances

10 -

12

Il
-

The distinction between understanding the situation in everyday terms and un-
derstanding the problem structure in terms of a formal algebraic problem sche-
ma is central to our model: Students require the most support when constructing
a problem model representation. They are often familiar with the everyday situa-
tions that these problems describe, and, indeed, this familiarity can serve as a
source of support for constructing the formal model. We do not propose a stage
theory, however, in which situational understanding must precede the formation
of the problem model. The kind of situation-based understanding required for
word problems must from the very beginning be driven by the salient features
of the problem text. Thus, the nascent formalism actually helps the student to
understand the situation in terms of the problem model and to comprehend better
the problem statement (Nathan, 1988). Consequently, we find a mutually sup-
porting relationship in which situational understanding helps students realize the
episodic meaning of a formal problem model, and, reciprocally, sensitivity to
the requirements of a problem schema aids in the construction of a suitable situa-
tion model. These claims of our model can be more clearly stated as experimen-
tal predictions for students’ problem-solving behavior.

Prediction 2: Students encouraged to interpret story situations mathemati-
cally by relating the characters, events, and relations in a given cover story
to their knowledge of formal symbols and expressions needed for a quan-
titative solution will be more competent in generating solution-enabling equa-
tions for word problems than their counterparts who use a straight transla-
tion-based approach of mapping story phrases to equations.

It follows from this claim that students who initially use the straight mapping
approach but subsequently learn to use the situation-based approach are expected
to demonstrate marked improvements in their performance, greater than one would
expect from just reviewing algebra. Because we are looking at the formation of
a two-way mapping from situational understanding to mathematics, the com-
plementary claim can also be made.

Prediction 3: Students encouraged to interpret algebraic equations situa-
tionally by relating the formal symbols and expressions to their knowledge
of characters, events, and relations in the given cover story will be more
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competent in the generation of situational descriptions of algebraic equa-
tions than their counterparts who use a straight translation-based approach
of mapping story phrases to equations.

As with the type of behavior mentioned earlier, we expect to see students who
are situationally trained demonstrate improvement that is not explained by a review
of algebra alone. Adequate situation-based reasoning will support the formation
of the inferences necessary for a complete understanding of a problem situation.
The situation model can support detection and even correction of formal-problem-
schema errors, but only when there is a correspondence made between the situa-
tion model and the problem model representations. From this discussion and these
predictions, one further claim can be made:

Prediction 4: Problem solvers who reason situationally are better equipped
than their phrase-oriented counterparts to recognize the situational appropri-
ateness or inappropriateness of a set of equations that may accompany a
cover story. Two subclaims follow.

Prediction 4a: These students will be better than their phrase-oriented
counterparts at matching a mathematical description to its referent situa-
tion and at detecting mathematical descriptions inconsistent with a given
situation.

Prediction 4b: These students will be better able to correct improperly
specified formal expressions so that they correctly describe the intended
situation.

Generating an Equation

Opvals in Figure 1 represent schema slots (e.g., T'1 represents the travel time for
Character 1). When a slot is referred to in a problem statement with an associat-
ed value, the oval for that slot can be filled. Otherwise, a variable is introduced
and put in the oval as a place marker, indicating the unfinished state of the problem
network. Other empty ovals can be filled in by a process of constraint propaga-
tion, so that subsequent ovals, when filled, must be consistent with the expres-
sions already specified. For instance, in Problem 1 we are asked for the travel
time of the second plane. We can use the proposition stating that the second plane
started 3 br later (Prop4) to obtain the supporting relation “¢ + 3” as the time
for the first plane (slot T for the first column). The two vertical D = R x T sche-
mas can supply entries for their respective D ovals. Applying the situationally
inferred equality relation (from Propll) for the two distances entered in the
problem schema yields

200 = (¢ + 3) = 250 = 1. (Equation Set 1)
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Algebraic Problem Schemas

Problem schemas and equations can be constructed in much the same way as in
Figure 1 for most algebra word problems found in college and high school text-
books. With a list of the required algebraic schemas, one can construct a priori
all the necessary problem models. Mayer (1981) compiled a list of 1,097 story
problems from standard textbooks, which he classified into eight families. The
first four families, comprising the majority of these problems, are various kinds
of rate problems, whereas the others are number problems (such as age problems),
geometry (e.g., area problems), physics (e.g., Ohm’s law), and statistics. The
general rate schema is of the following form:

UNIT1 = Rate-of-UNIT1-per-UNIT2 x UNIT2.

The differences among the four rate families are differences in the nature of the
units:

Rate Family UNIT1 UNIT2
Amount per time Amount Time
Cost per unit Cost Unit
Portion to total cost Portion Total cost
Amount to amount Amount Amount

Number problems, on the other hand, generally are not so clearly tied to a
particular schema; instead, relations tend to be specified in the text, except for
certain abstract properties of numbers (e.g., that even numbers are always 2 X
N). For physics and geometry problems, physical laws, theorems, and axioms
correspond to schemas. Newton’s second law —that the sum of all forces for a
system in equilibrium must be zero—is one example.

In Appendix A, two representative problem types are shown for each family
of rate problems. The many subtypes within each category listed by Mayer (1981)
differ from the examples analyzed here in the nature of the supporting relations
given and/or the unknown value being requested. These variations can be
represented similarly. The rate schema in its various forms is, therefore, all we
need for the construction of problem models for thousands of word algebra
problems. Instead of over 1,000 problem types, we need to be concerned with
only a limited set of building blocks for algebraic schemas like those of Figure 1.

The schematic formalism we developed is designed to help students under-
stand the conceptual structure of an algebra word problem, but it is not the only
formalism possible in the domain of algebra problems.? Furthermore, it does not
understand the problem for the student. Students must still make the hard infer-

2For related approaches, see Shalin and Bee (1985), Greeno et al. (1986), and Hall et al. (1989).
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ences, still apply their knowledge of the situations described, and still ultimately
generate algebraic equations. The graphic network representation reduces stu-
dents’ memory load by constraining the sort of information that is to be consid-
ered, providing cues for what might be important, and making it apparent when
vital information is absent from the problem model.

From this discussion, it should be clear that a goal of any instructional ap-
proach that grows from our model will be to help students organize and search
for missing information by making otherwise covert structures overt, using, for
example, a graphical arrangement. A second purpose will be to provide the stu-
dent with a way to check what has been done. An animation driven by the stu-
dent’s formal problem representation makes apparent the situational implications
of that structure. For example, seeing the faster plane overtake the slower one
and continue across the screen indefinitely may suggest to the student that incor-
poration of additional constraints in the problem schema will bring about the in-
tended animation: namely, that the two planes must not pass their ultimate
destination. The top horizontal line segment in the example (Figure 1), which
equates the distances traveled by the two planes, represents such a constraint.

THEORY OF LEARNING: MAKING FORMALISMS
SITUATIONALLY MEANINGFUL

Word-problem solving is both an exercise in text processing and in mathematics
skills. Teachers, however, often focus their efforts on developing students’ skills
in manipulation of formal mathematical expressions rather than on strategies of
problem comprehension (Mayer, 1985; Willis & Fuson, 1988), although there
is strong evidence (e.g., Cummins et al., 1988) that the latter is what makes word
problems so notoriously difficult.

It seems that students readily learn to manipulate the necessary formal rela-
tions. They also demonstrate early familiarity with “translation rules” that help
map key words found in word problems into the language of algebraic expres-
sions (e.g., by mapping to times, altogether as plus; Nesher & Teubal, 1975).
But students often do not learn the underlying principles of algebra or do not
see the formulas as mathematical models (i.e., descriptions) of the situations
described (Greeno, 1989). Thus, students will assign a meaning to the symbols
of a formal expression, although it may be inconsistent with or unrelated to the
situation described. When given situationally impossible problems, for example,
some students blindly translate passages into formal expressions and produce an-
swers that, although mathematically correct, are in reality absurd (Paige & Si-
mon, 1966). Those who form situational representations of the symbols and
expressions realize either the impossibility of the problem setting or, on calcula-
tion, the impossibility of the solution (e.g., requiring a negative amount of money
in one’s pocket). Similar findings are available from research on physics prob-
lem solving (Caramazza, McCloskey, & Green, 1981; Larkin, 1983), geometry
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(Schoenfeld, 1987), and programming (Pennington, 1987). Wertheimer (1945/
1982), in his famous discussion about teaching students to find the area of a
parallelogram, was probably the first to draw attention to this dissociation of for-
mal expressions from the situation described.

Greeno (1989) explained many of these results as instances where abstract
symbol-space representations (e.g., equations) and transformations, and real-
world or situation-space representations coexist as disconnected systems. Con-
sequently, students learn to solve symbolic expressions procedurally without learn-
ing how to reason about related real-world events. When these representations
exist as disconnected entities, it is possible for problem solvers to perform oper-
ations on symbolic expressions that are no longer faithful to the situations to
which the intended expressions refer. By establishing a correspondence of the
symbols to the situation, one roots the formalisms in the space of permissible
and expected events (Greeno, 1989). Unfortunately, institutional instruction some-
times ignores this and fosters the acquisition of procedures not anchored to real-
world situations.

The theory of problem comprehension we have presented shows how a for-
mal problem description, such as a set of equations, relates to a concrete situa-
tion. Clearly, it is not always practical to bring the real world into the classroom,
having students observe real flying planes, for example. But we do have the tech-
nology to provide reasonable animations of these events that can be substituted
for the real thing. This general idea is not new. The most well-known education-
al computing environment providing this capability is the LOGO system (Harel,
1990; Papert, 1980). LOGO provides students with the capability of driving com-
puter graphics and robotic motors to test formal hypotheses. LOGO, however,
makes no explicit link to the formalisms underlying the subsequent behavior, a
link that we regard as crucial to overcoming decontextualization. The most im-
portant benefit that we claim for an instructional approach that emerges from our
theory is that it will help to avoid the decontextualization of algebraic knowledge
by forcing students to consider formal expressions with reference to a particular
situation.

Others have done theoretical work with educational implications similar to our
own. Relying on extensive empirical analyses of how college students solve such
problems, Hall et al. (1989) observed that model-based reasoning plays a crucial
role in algebra-word-problem solving. They concluded that “integrating dual
representations of a problem at situational and quantitative levels is a central aspect
of competence” (p. 269). To represent the quantitative level of a problem, Hall
et al. used a graphical scheme based on the work of Shalin and Bee (1985) and
Greeno et al. (1986) similar in many ways to the schematic representation pro-
posed earlier. Lewis (1989) taught students a diagrammatic representation sys-
tem intended to make the formal relations of a problem more accessible to the
student. This approach highlights the semantic and situational structure of arith-
metic problems in a form that is independent of the consistency of the problem’s
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language. Willis and Fuson (1988) used diagrams to emphasize the state changes
taking place for the quantity of concern in the problem situation. The diagrams
then helped students to select the appropriate solution strategy for common word
arithmetic problems.

These studies used representations that are not in the form of an animation
but are based on more abstract descriptions of situational and mathematical rela-
tions. They are “learning systems” in Nesher’s (1989) sense, intermediate to the
formal problem schema and to the situation itself.

A STRATEGY FOR TUTOR DESIGN:
DISCOURSE COMPREHENSION THEORY
AND INSTRUCTIONAL PRINCIPLES

Our tutoring approach rests on a double foundation: (a) a theory of how students
understand and solve word problems and (b) a set of instructional principles. Each
of these components is laid out in the following sections.

The Theory of Word-Problem Understanding: What to Tutor

As stated earlier, ANIMATE is directly based on the theory of word-problem
understanding originally proposed in Kintsch and Greeno (1985) and elaborated
by Reusser (1988), Cummins et al. (1988), and Kintsch (1988). Although previ-
ous work dealt with arithmetic problems, our extension of this theory to algebra,
just described, is straightforward. In place of the “set” schema and its variants,
we introduce a larger set of algebraic schemas, primarily the various rate sche-
mas described (see Appendix A). We need only replace the counting strategies
employed in arithmetic problems with more powerful calculational strategies,
namely, the constraint propagation procedures for generating equations from the
problem model and the algebraic procedures for solving these equations.

Kintsch and Greeno’s (1985) theory of arithmetic-word-problem solving has
been formalized as a computer simulation and tested empirically, so we have some
assurance that it captures the essential features of how young students solve sim-
ple arithmetic word problems. At present it does not seem possible to formalize
and empirically test our model for algebra-word-problem comprehension in the
same way. To construct a simulation for word algebra, one would need a
knowledge base that included an enormous stock of general world knowledge,
in addition to knowledge about algebra. It is not clear at present how to construct
such a large and general knowledge base or how to operate with it if we had
one (but see Lenat & Guha, 1989, for a presentation of a system with this goal
in mind). Hence, a simulation is impractical at this time, and we have no ready
means to derive and test empirical predictions from the model.

Instead, we can consider our tutor as a test of the theory, following Anderson,
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Boyle, and Yost (1985) in this respect.> Obviously, this is a risky strategy. If
the tutor fails to improve student problem-solving performance and comprehen-
sion, we will not know if the underlying theory was wrong or if we made poor
system design decisions unrelated to the theory. Similarly, if subjects using the
tutor demonstrate elevated comprehension and solution performance, we have
only an indirect test of the theory.

In building a tutor, we need to address both what to tutor and ow to go about
it. The answer to the first question can be obtained by taking our model serious-
ly: We must facilitate the construction of students’ mental representations that
relate the formal and the situational aspects of a word problem. We do this by
making certain representations explicit so that students understand that symbolic
expressions have a situation-based interpretation. In principle, this model can be
worked out to the same level of detail as was done for arithmetic word problems,
making explicit all the steps involved, as in the earlier examples. Taking our earlier
discussion and the results of Cummins et al. (1988) as a cue, we focus here on
the task of helping students to learn the translation from the problem text into
a formal, conceptual structure.*

With many of these steps, of course, people do not need help. We presume
our students can read, for instance. When problems are familiar or the level of
the problem solver’s expertise is high, the transition from problem text to solu-
tion may be more direct and the relevant inferencing may seem automatic. For
experts, the situation model and the problem model effectively constrain each
other, so that no major gaps can arise between them, or, if they do, they are
quickly corrected.® Experts see the world filtered through their problem models
and solidly anchor their formalisms in the real world. Novices have to learn to
do this. Their problem models may correspond poorly to the situational constraints
of a given problem, and this lack of correspondence may go unnoticed. With
the situational component of our tutor, we try to get students to coordinate their
naive situational understanding with their formalizations. We are not concerned
with the experts, because they do not need much help and encouragement. They
can generate solvable problem representations directly from the problem text,
leaving much of the conceptual structure implicit. But for the many students who
need the steps spelled out, we believe that making the intermediate representa-
tions concrete and the relations among them explicit will provide the right kind
of assistance.

3For example, some algebraic instruction makes use of role tables, which similarly organize the
equation information, making the role of each algebraic term explicit (Anderson, 1989b).

“Note, however, that we do not claim to have a process-level model of problem comprehension
to the same degree of detail as proposed by others (e.g., Anderson, Conrad, & Corbett, 1989; J. S.
Brown & VanLehn, 1980).

5Although students also need help in solving the algebraic equations, we are only concerned with
the construction of conceptually correct equations. Other tutors (e.g., J. S. Brown, 1985; Singley
et al., 1989) exist that focus on solving equations.
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The answer to our second question—how to tutor—cannot be derived solely
from the process model of how students solve word problems. Numerous ques-
tions arise concerning various aspects of tutoring and user interface principles
that are outside the domain of our process model. Recently, much has been done
to apply the laboratory findings of cognitive psychology to the field of instruc-
tion. We borrow from this work to help us determine the principles that will guide
the design of our computer-based tutor.

Instructional Principles: How to Tutor

Anderson, Boyle, Farrell, and Reiser (1984) presented several principles de-
rived from experimental research in cognitive psychology that, they argue, are
central to tutoring. There is a strong case for and widespread agreement on some
of these principles, such as the importance of minimizing students’ working
memory loads during problem solving (cf. Polson & Richardson, 1988; Scardama-
lia, Bereiter, McLean, Swallow, & Woodruff, 1989). Also widely agreed on is
that making students’ goals and processes overt, instructing them in the context
of the specific task, and providing support for successive approximations toward
a solution help the student in task performance and skill acquisition (Glaser &
Bassok, 1989).

Another principle states that feedback from a tutor needs to be immediate if
students are to improve optimally (e.g., Anderson et al., 1984; Anderson, Con-
rad, & Corbett, 1989; Reiser, Kimberg, Lovett, & Ranney, 1989). This is based
on the view that “An error comes close to being a necessary and sufficient condi-
tion for tutorial intervention” (Anderson, 1989a, p. 343) and on experimental find-
ings showing that when subjects get “lost” they must use tremendous cognitive
resources to get back to their original goals (Anderson, 1982). Such episodes,
it is argued, do little to help students learn and can confuse the memory traces
of correctly learned behavior.

It seems clear that, in a variety of reasonably well-constrained domains (e.g.,
algebraic manipulation, introductory programming, and geometry), immediate
feedback is the most successful approach (cf. Anderson et al., 1989). In open-
ended domains (e.g., the life sciences or the comprehension of word problems),
however, there is less evidence that is compelling. For a program to adaptively
customize its behavior and provide immediate feedback, the tutoring system must
understand what the student is doing. One needs a detailed psychological process
model of the behavior in question. With the dependence on language compre-
hension implicit in word-problem solving, this level of analysis is either not avail-
able or too sketchy to be of much use (Anderson et al., 1989). A program that
misclassifies minor errors (or typos) as major conceptual errors or lets an er-
roneous method go uncorrected because it led to a correct answer may do more
harm than good.

In the absence of a complete psychological process model that accounts for
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varied reading and problem-solving styles in this domain, we have opted for a
minimalist system. Our goal is the development of a computer system that aids
students in problem understanding and learning. We propose an approach that
assigns to the computer program tasks such as executing simple, time-varying
graphics, bookkeeping, and processing formally described relations (e.g., equa-
tions). More complex, knowledge-intensive tasks such as natural language process-
ing and inductive reasoning are left for the student. Other systems—such as
EUCLID (Smolensky & Fox, 1988), a computer system for specifying argumen-
tation, and CSILE (Scardamalia et al., 1989), a system of networked computers
that supports scientific discussion—share this philosophy. In our system, the com-
puter program serves as an informative worksheet for mathematics and anima-
tion. The student reads a problem, constructs a formal problem model, and obtains
feedback from the animation regarding its correctness. The system primarily helps
to organize problem information around selected schemas and allows the student
to see the situational correlate of specified formal relations. Such a learning en-
vironment does not try to understand in any deep way the student’s actions or
the problems. Yet we believe and present promising results to the effect that this
is sufficient to enhance students’ learning, provided it is capable of supporting
students in an active learning process.

Instructional principles laid out by Scardamalia et al. (1989) focus on the need
for tutoring systems to encourage students’ active participation in processes such
as planning, self-assessment and monitoring, problem-relevant inferencing, goal
setting, knowledge organization, and problem solving (cf. Papert, 1980). This
approach emphasizes “procedural facilitation,” in which learning must be done
by the students themselves and the function of instruction is to facilitate that learn-
ing (Bereiter & Scardamalia, 1989; A. L. Brown & Palincsar, 1989; Collins,
J. S. Brown, & Newman, 1989). In this view, it is the student, not the tutor,
who performs diagnosis, goal setting, and planning to give the maximum oppor-
tunity for learning. Tutors provide the facilitating structures and tools that en-
able students to use their intelligence and knowledge, rather than providing
knowledge and intelligence to guide the learning. This view has met with success
in other arenas, most notably with students using the LOGO environment (Bat-
tista & Clements, 1986; Clements, 1986; Harel, 1990). However, Scardamalia
et al. (1989) also noted that giving students total autonomy can lead to poor results,
because the system cannot help the student (a) learn to learn, (b) set cognitive
goals, (c) facilitate problem comprehension, and (d) develop self-monitoring and
knowledge organization skills.

We draw heavily on these concepts to provide a system (described in the
next section) in which the student is an active participant, not only in the problem-
solving process, but also in solution assessment, error diagnosis, and recovery.
We cannot provide an adequate software environment for intelligent, knowl-
edge-based feedback and explanation for the domain of word problems. We have
neither the knowledge base for this domain nor an all-encompassing task analysis.
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However, by enlisting the students in the process, having them close the feed-
back loop for us, we expect to obtain the types of learning and problem-solving
improvements ordinarily expected from intelligent tutoring systems.

THE ANIMATE LEARNING ENVIRONMENT

ANIMATE is an interactive tutor that facilitates comprehension of word problems
by helping the student to construct a formal problem network, which is then used
to run a simple animation of the problem. It represents our approach to provid-
ing situational support for the construction and evaluation of algebraic expres-
sions and is greatly influenced by the work reported earlier on situation-based
reasoning and on the principles for effective instruction. The detailed empirical
observations of competent problem-solving behavior made by Hall et al. (1989)
are very encouraging for this approach. We provide students with an environ-
ment that supports the construction of what Hall termed model-based solutions.
Ideally, ANIMATE users will produce the iterating, simulation type of reason-
ing that Hall’s competent problem solvers produce with paper and pencil. We
additionally expect that the more facile medium of computer animation will be
motivating for students. ' '

Primarily, ANIMATE is rooted in our discourse-processing-based theory of
word-problem comprehension. The major claim of this theory is that problem
comprehension rests on the student’s formation of a representational structure link-
ing his or her understanding of the problem situation to a solution-enabling for-
malism. This permits the student to express mathematical ideas situationally and
interpret events in a mathematical form.

Figure 2 sketches this linking function of our tutor. The lower portion depicts
how, according to our model, algebra word problems are solved without the aid
of a situation-based tutor. The text of the word problem is comprehended, and
both a situational representation and a formal algebraic problem model are con-
structed. This step is not performed automatically by the tutor or simulated by
some underlying computational model. Rather, it is a hypothesis of our psycho-
logical theory of problem comprehension that these steps are followed by the reader
attempting to encode the presented information. We include it to give the entire
workings of the theory. That is, the theory accounts for the transitions from a
text to a set of mental representations for the meaning of the text, to a final mathe-
matical description.

General world knowledge enters into the former process, and more special-
ized algebraic knowledge determines the latter. The point in our model at which
decontextualization can occur is indicated in the sketch by the broken line la-
beled coordinarion. The tutor, ANIMATE, does two things. First, it requires
the student to construct an explicit, graphical representation of the conceptual
problem model (the algebraic problem schema) before deriving an equation that
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FIGURE 2 A graphical depiction of our theory of problem comprehension. From the bot-
tom moving up, problem-relevant information and situation-relevant information are each ex-
tracted from a problem text, forming potentially isolated mental representations. Problem
comprehension is achieved when these representations cohere. When a student explicitly links
a problem model (such as the network) to a situation model (such as an animation), their coor-
dination is facilitated. Students manipulate the network to produce changes in the animation
until the animation matches their expectation of the problem situation.

will actually solve the problem. Later we discuss the benefits expected from in-
troducing this intermediate step. Second, by using an animation to illustrate the
actions implied by the student’s problem representation, ANIMATE provides a
link between the formal domain of algebra and a situation in the real world. It
is not only that the student can use the animation to check whether or not the
problem was conceptualized correctly (the “Is it right?” link of Figure 2). That
is important. But equally important is establishing the link between the concepts
and structures in the formal model and the events in the animated world (top



348 NATHAN, KINTSCH, YOUNG

arrow), so that initial problem comprehension will prevent students from making
certain errors or omissions in the first place (Nathan & Young, 1990).

The animation serves as the externalization of a student’s situation model. It
is not the case that any externalization will do. According to the theory, the events
must be represented in a form that allows students to operate on the situation
model and to go through a process analogous to actually manipulating or observ-
ing the physical objects themselves. Animations of the kind used in our tutor have
this feature of being analogous to real-world events.

Any unexpected behavior in the animation can then be traced back to the for-
mal problem representation along the student’s causal link structure, addressing
“What went wrong?” and further strengthening the situation—equation correspond-
ence. Changes to the algebraic network make something happen in the anima-
tion; so the animation provides a context for the formalism and grounds it in
a depiction of reality. It is a necessary assumption of our theory that students
are capable of understanding the stories given and that they form an appropriate
situation model. Without this, subjects would be unable to evaluate the feedback
given by the system. They would be looking at two potentially meaningless
representations —a set of abstract symbols and an unfamiliar animation—and their
coupling, no matter how extensive and explicit, would not teach them anything
about the situational meaning of mathematical expressions.

There are other tutoring systems with similar goals, notably the Envisionment
Machine (Roschelle, 1987), and the TRIP tutor (Gould & Finzer, 1982). The
Envisionment Machine, like ANIMATE, supports multiple representations. One
representation simulates physical situations, whereas the other provides a manipu-
lable formal problem schema (force diagrams, in this case). A problem solver
must coordinate these two representations and resolve conflicts so that they are
consistent. Furthermore, the resulting situation must be plausible for the objects
behaving in the world as we know it, and the symbolic expressions must be mathe-
matically legal and follow all known constraints.

The TRIP tutor (Gould & Finzer, 1982) was designed to help students formu-
late the appropriate distance-rate-time equation from a written problem state-
ment. TRIP lets students build computer animated descriptions of collision
problems and then evaluate their own equations based on the behavior of the ani-
mation. Unlike our tutor, no attempts were made to base TRIP on an explicit
theory of problem comprehension. Furthermore, it is the teacher in TRIP who
provides the criteria for correctness of the constructed picture, whereas ANI-
MATE exploits the student’s ability to assess this (Nathan, 1990).

ANIMATE also provides the student with greater flexibility in the construc-
tion of situation and problem models. TRIP contains explicit knowledge of each
problem assigned (distances, rates, and travel times), and students can only enter
values that are correct for that problem. The animation in TRIP will run only
when the problem description is correct. ANIMATE has no notion of a correct
problem description, only an internally consistent one. The student can arbitrarily
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vary a problem to have different values, constraints, and unknowns. Indeed, partial
and even incorrect problem model networks can be run. This contributes to the
exploratory nature of ANIMATE.

ANIMATE is written in HyperCard™ and runs on Apple™ Macintosh com-
puters. It requires a minimum of a Macintosh Plus™ with two drives. Currently,
ANIMATE only tutors problems in the amount-per-time rate family of word
problems (Mayer, 1981). These are problems that employ the D = R X T equa-
tion and include “overtake,” “collision,” and “distance apart” problems. Other areas
of instruction, such as “compound interest,” planetary physics, and computer
programming, are under investigation, but we do not expect the approach out-
lined here to address all topics in the current educational curriculum. We feel,
however, that the principles guiding this approach are fundamentally beneficial
to many students and extendable to a variety of domains often left out of the realm
of Intelligent Tutoring System development.

The tutor was designed so that students can use it with little or no instruction.
All available commands and network values are displayed on the screen as but-
tons. Students choose commands and change values by selecting the appropriate
button with a free-rolling mouse cursor and pushing the mouse button. Conse-
quently, the interface reduces working memory load by only allowing legal com-
mands. Although students are guided in the correct use of the system, ANIMATE
gives them a great deal of control over how to decompose each problem and the
order in which to achieve subgoals. '

An effective way to describe the functioning of the system is with an example
of how a student would use ANIMATE to solve a specific algebra problem. We
assume that the student has been given instructions to produce the equations neces-
sary to solve the following problem:

: Problem 2: Collision Word Problem
A huge ant is terrorizing San Francisco. It travels east toward Detroit, which
is twenty four hundred miles away, at four hundred miles per hour. The
Army learns of this one hour later and sends a helicopter west from Detroit
at six hundred miles per hour to intercept the ant. If the ant left at 2 p.m.,
what time will the helicopter and the ant collide (ignoring any time changes)?

The student decides on an initial goal of describing the movement of the ant,
pushes the button Pick Character 1, and is presented with pictures representing
the possible characters (Figure 3). After choosing the ant, buttons appear at the
bottom of the screen allowing the student to select a pointing hand for the ant’s
starting location and travel direction. The student chooses the leftmost, east-facing
button, and the ant appears in the corresponding position on the screen.

To specify the motion of the ant, the student must build and customize a problem
schema. Pushing the Equations button causes a palette of suggested network equa-
tions to appear (see Figure 4). The equation palette provides the student with
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FIGURE 3 Pushing the Pick Character 1 button presents a selection of characters for play-
ing out the situation on the computer screen. Students select first a character and then a screen
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FIGURE 4 Problem model construction is supported by an equation palette that presents
network components that are then linked together on the screen.
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small schema-building blocks to organize problem information rather than re-
quiring the student to work only at the level of entire schemas (for justifications
of this approach, see Kintsch, 1988; Schank, 1984). The student chooses

and the first D = R X T equation in the network appears. This equation may
be made the stopping condition for the animation if the student chooses. The ani-
mation will then stop when it is satisfied by the position and travel time of the
ant. The selection of a stopping condition encourages the student to link the
problem-model representation and the situation-based goal, because real events
need a specified end to be properly described. This type of behavior, where
problem solvers are explicitly addressing the boundary conditions of the under-
lying situation of a problem that is described mathematically, has been identified
with competent problem solving (e.g., Hall et al., 1989). The student then selects
the rate node (R1) of the network and, in accordance with the information of
Problem 2, uses the calculator to enter the number 400 (see Figure 5).

1 2
Ant

Distance m
=]

Rate R1

o]
rime

FIGURE 5 Values and variables are entered into a selected node by way of a calculator
interface. Here, the rate of the ant given in Problem 2 (400 mph) is being entered.
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To check one’s progress, the student pushes the Run button, which first checks
the problem schema for algebraic and network errors. The student could check
for problem schema errors without running an animation by selecting the Check
Net button, but running an animation always initiates a preliminary network check.
The tutor finds no errors and so begins the animation by moving the ant across
the screen at a correlate of 400 mph. The animation, the clock that shows the
elapsed (animation) time, the calibrated ruler at the top of the screen, and the
distance gauges all provide the student with valuable situation-based feedback
for assessing the correctness of the problem schema. Because distance and time
variables are unspecified, the animation will continue until the student pushes
the Stop button. After determining that the initial goal of describing the ant has
been met, the student develops the remainder of the problem schema.

To build the rest of the network, the student chooses from the palette

*5
and an animation stopping-condition of

The final equation appears in the network with a box around it. Conceptually,
this last equation is a more appropriate choice as a stopping condition than, say
D1 = Rl x T1, because it emphasizes the situational nature of the story—
characters traveling a certain combined distance—rather than a relation that is
static and true throughout the problem situation.

The horizontal equations are supporting relations. As described earlier, they
specify the relative behavior of the two characters and are often based on infer-
ences made by the problem solver. Our tutoring approach, by emphasizing the
situational nature of the problem and its tie to algebraic schemas, is intended to
help the student generate these inferences, specify them mathematically, and di-
agnose them.

The student enters the remaining values given in the problem, putting 2400
in the D3 node to show the characters’ initial distance apart and 600 in R2 as

the helicopter’s rate. From the text, the student knows that the helicopter leaves
1 hr after the ant and so mistakenly believes that this delay (73) should be




ALGEBRA-WORD-PROBLEM COMPREHENSION 353

subtracted from the helicopter’s time. The student knows also from the text that
the ant leaves at 2 p.m. and so erroneously enters 2 for 7'1. Because the helicop-
ter leaves 1 hr later, 3 is entered for the 72 node. He or she then pushes the
Check Net button, and the tutor finds no math errors or obvious net errors, such
as an incomplete equation.

The student then enters the distance values by multiplying the rates and times
in the network (400 % 2, 600 * 3 for each character, respectively). When Check
Net is pushed now, the tutor warns that 800 + 1800 = 2400 is not correct and
highlights the flawed equation (Figure 6). This feedback indicates that there must
be an error in the network. If the distance values were changed so that they cor-
rectly add to 2400, the vertical D = R X T equations would be incorrect. The
student decides to ignore the error and, with no further errors found, pushes the
Run button.

The student immediately notices that the helicopter, not the ant, starts moving
first (Figure 7), which is contrary to any situation-based expectations. The mis-
match suggests that the delay for the characters is improperly specified in the
network. The time equation in the bottom row is suspect. He or she stops the
animation and uses one of two methods to alter this expression. The student may
use the mouse cursor to change the “—” operator directly to a “+” using the

’ 1 I 1 4 H 1 I 1 1 | 1 1 1 1] 1 1 I I I l

55 E 800+1800=2400 is not correct. @

(Deal with 1t] [(1gnore Error)|
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FIGURE 6 A fully developed problem model, including characters and their associated values
and relations. The distance equation is boxed, indicating its role as the stopping-condition
for the animation. The tutor detected an error in the distance equation that the student chose
to (explicitly) ignore.
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FIGURE 7 After 19 sec, only the helicopter has moved —behavior specified by a negative
delay value in the time equation—in contrast to the situation of Problem 2. The erroneous

distance equation is still present in the problem model network, the student having chosen
to ignore it.
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calculator, just as values and variables are changed in the ovals. Or the student

may pick the equation

Having executed either of these two methods, the equation now means situation-
ally that the delay is attributed to the helicopter (i.e., the ant travels for more
total time). The time equation in the network changes from2 =3 — 1to 2 =
3 + 1, which is obviously wrong arithmetically. The student realizes now that
he or she has entered “starting times” for the characters, whereas the network
needs “travel times” to produce an appropriate animation. Because these times
are unknown, the student enters variables in the associated distance and time bub-
bles of the network.

When the animation is run this time, the ant leaves an hour before the helicop-
ter. As the ant and helicopter near the point of collision (Figure 8), the student
decides that the animation matches his or her mental image of the word problem.
The following equations, verified syntactically and situationally, are taken from
the subgraphs of the net.
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FIGURE 8 The animation is run on a debugged network. It shows a collision situation in
accordance with expectations. Time and distance gauges show solution values, whereas the
network contains the problem formalism. The final algebraic equations can be read from the
network horizontally and vertically.

D1l =400 x T1

D2 =600 x T2

D1 + D2 = 2400

T1 =T2 +1 (Equation Set 2)

The preceding example illustrates how a problem solution is reached through
a series of successive approximations. ANIMATE supports this by helping the
student to generate and then diagnose a formal problem network. Normally the
problem schema is an implicit, intermediate, mental structure in a long line of
such structures generated from the initial stages of reading a problem to the even-
tual production of a solution. By making this structure overt and explicitly tying
it to a situation, the student gains a more concrete understanding of the conceptu-
al relations of a problem.

ANIMATE knows nothing of the problem being solved and so cannot tell the
student if the network being built is correct. We rely on the student’s understand-
ing of the situation described in the problem statement to set his or her expecta-
tions for how the animation should appear. In Figure 2, this is represented by
the “Is It Right?” link from the student’s situation model to the computer anima-
tion. This question is addressed by the student; it is he or she who decides if
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the animation matches the problem representation and so answers the question,
“Is It Right?” A mismatch suggests how the student may alter the problem sche-
ma to create the expected animation. In this way, the student also addresses the
“What Went Wrong?” link. Thus, we can restate our goal in designing the tutor
as providing situation-based feedback so that students can detect and correct their
formal problem models, that is, successfully address the “Is It Right?” and “What
Went Wrong?” links.

To encourage active participation by the student in the construction of the net-
work and evaluation of the animation, the tutor provides visual, auditory, problem-
model-level, and situation-level feedback. Visual feedback is demonstrated not
only by the animation but also through the button-based interface. When a stu-
dent selects a button or network node, the button briefly highlights to indicate
it has been selected. For example, network nodes are highlighted as the subject
enters new values. Auditory feedback includes short musical pieces indicating
when the animation has begun, is interrupted, or is completed. Problem-model
feedback is provided by an equation palette as a network building tool and as
the arithmetic and network-level checks. The animation specified by the network
is the source of the tutor’s situation-level feedback. It includes the characters that
move in specified directions, the clock, the ruler, and other gauges.

PRELIMINARY EMPIRICAL SYSTEM EVALUATION

Is ANIMATE a good tutor —better than traditional classroom instruction, perhaps
even approaching an experienced human tutor? Even more important, does ANI-
MATE truly help the student bridge the gap between real-world situations and
formal operations? Is it a way to avoid decontextualized learning, as the underly-
ing model claims? We do not have definitive answers to these questions. In par-
ticular, we do not have a large-scale, long-term classroom evaluation of the
effectiveness of the ANIMATE system or a system complete enough and suffi-
ciently robust that it could be used for such an evaluation. Nevertheless, the ques-
tion of the empirical adequacy of the tutor is important enough, so that éven our
preliminary results are of interest.

In a study by Nathan (1988), subjects with high-school-level algebra experience
were given limited training using the graphical network approach of Figure 1
to solve distance~rate—time problems. After only a 20-min training session, these
subjects produced significantly more problem-related inferences in their recall
protocols than did subjects who used the traditional equation method or who sim-
ply read the problem for comprehension. These subjects did not, however, show
significantly better problem-solving performance. This suggests that the network
method facilitates problem organization in terms of a situation model, but it does
not support solution generation to a greater degree than equations do.

Another study investigated the psychological reality of the problem schema

S S P s sl
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level, similar to the network described before, as an intermediate representation
between the cover story and the underlying solution equations. Weaver and Kintsch
(1992) showed that subjects rated problem pairs significantly more similar when
similarity was based on schema structure (i.e., the intermediate level) than when
based on the form of the underlying equations. Given the widespread finding that
subjects are very poor at detecting structural similarities among such problems
(e.g., Reed, 1987), Weaver and Kintsch (1992) argued that this may be due in
part to the way we define structure. Subjects are indeed sensitive to the concep-
tual structure of a problem although not to its equation form.

Like the two studies already mentioned (Nathan, 1988; Weaver & Kintsch,
1992), the experiment that follows is limited because of the extremely brief training
period and because problems of only one type (distance-rate—-time) were used.
The experiment was designed to explore ways to facilitate problem comprehen-
sion and to give meaning to the abstract symbols used for formal problem solv-
ing. For that purpose, the performances of four different problem-solving treatment
groups on a variety of problems were compared with reference to our theoretical
predictions. We restate them briefly here.

Prediction 1 focuses on the types of errors students are expected to make when
there is no firm foundation for relating their mathematical knowledge to their
situational understanding. Prediction la states more specifically that students
without this foundation will tend to omit from their solution protocols expres-
sions that are inferable but not immediately present in the textbase. In our terms,
these errors will appear as omissions of uncued supporting relations. Prediction
1b holds that, when students subsequently learn to relate their mathematical
knowledge to their situational understanding, we witness a large decrease in the
frequency of omissions and misspecifications of these inference-based relations.

Prediction 2 expresses our expectations that the animation-based feedback will
be an effective aid in the generation of solution-enabling equations for word
problems. We expect this advantage to continue, even when the feedback is re-
moved. A like advantage is not expected merely from experience with the net-
work method. Prediction 3 similarly maintains that the ANIMATE learning
environment will effectively support the situational interpretation of formal equa-
tions and that this advantage will also continue when solving problems without
the aid of the tutoring system,; that is, a lasting change in these students’ problem
comprehension strategies will occur.

Predictions 4a and 4b address the ability to recognize the appropriateness of
a set of equations to a situation. We predict that the situation-based reasoning
encouraged by the ANIMATE system will support greater discriminability of equa-
tions in its users than in those who work only with equation-based structures (4a).
We further expect that the feedback component, which supports error diagnosis
and correction, will enhance students’ performances in reformulating erroneous
and mismatched equations (4b).

In all, we hypothesize that students who exhibit early difficulties in problem
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solving will benefit from exposure to an environment that explicitly relates one’s
situation model to the formal problem model. This will affect students’ problem-
solving behaviors and comprehension processes and will continue to benefit these
students when they solve problems outside the tutoring environment.

METHOD

Subjects

Fifty-six undergraduate students from the University of Colorado participated in
a 2-hr experiment as part of their course requirements for Introduction to Psy-
chology. All had a background in algebra through the high school level, and in
a postexperiment interview, all reported familiarity with the kinds of problems
given.

Design and Materials

Subjects were randomly assigned to one of four treatments—equation, stopping
condition, network, or animation—and were tested in groups of 14 students at
a time to mimic a classroom setting. All groups received identical pretests, an
experimentally manipulated training session that included a review of algebra word
problems and three training exercises, and identical posttests. Examples of the
materials provided in each of the experimental tasks are presented in Appendix
B. During the training, subjects in the network, stopping-condition, and anima-
tion groups additionally used tutoring programs that ran on Apple™ Macintosh
computers, distributed one to each subject. Thus, the experiment was a 4 (Treat-
ment, between subjects) X 3 (Problem Type, within subject) X 2 (Time of Test,
between subjects) repeated measures design.

The tutoring programs varied in functionality. The ANIMATE tutor, with ani-
mation causally linked to the equation network, as described before, was used
by the animation treatment group. The stopping-condition group used a tutor
closest in functionality to the ANIMATE system. Subjects set up an equation net-
work and a situation on the computer screen and selected an equation that, when
true, was to stop the animation. Stopping-condition subjects, however, were not
able to “run” an animation to receive situation-based feedback on their equations.
They set up a static depiction of the situation, and their only feedback was at
the level of the algebraic self-consistency of the network. The network-only tu-
tor did not require selecting a stopping condition or setting up a situation. With
this tutor, subjects constructed an algebraic network in a computer environment
with an interface that was otherwise similar in layout to the animation and stopping-
condition tutors. The functionality of the various tutors is summarized in Table
1. The network-only and stopping-condition tutors can be grouped together as
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TABLE 1
Differences in Functionality of the Tutors Used in Experiment 1
Network Set Up Problem
Tutor Formalism? Situation? Run Animation?
ANIMATE 1.0 Yes Yes Yes
Stopping condition Yes Yes
Network only Yes

nonanimation tutors, whereas ANIMATE and the stopping-condition tutor can
be viewed as (differing levels of) situation-based tutors. The three “tutor”
conditions —animation, stopping condition, and network —were designed to tease
apart effects due to the different aspects of constructing the network, setting up
a situation, and running an equation-driven animation on the computer. Subjects
under the equation treatment constituted the control group, controlling for any
improvement that may have resulted from a review of the algebraic concepts and
repeated exposure to the algebra word problems.

The paper-and-pencil pretest and posttest consisted of four distance—rate—time
problems. Two were of the solve variety, where students were told to write down
an equation or set of equations that could be used to solve each problem. Sub-
jects were told that they did not need to do the algebraic manipulation that would
lead to a numerical answer. This problem type was intended to test a subject’s
ability to generate a (set of) mathematical expression(s) that describes a situation
presented in the form of a story. This ability to translate a qualitative, informal
representation into a solution-enabling, formal representation is seen as a crucial
part of word-problem comprehension. It also serves as an operational test of
Prediction 2.

As a test of the complementary skill and Prediction 3, we gave subjects a set
of time and distance equations with no accompanying story line. Subjects were
directed to write a short story to serve as a legitimate word problem for the given
equations. We refer to this as the story problem and use it to ascertain a subject’s
ability to extract and report the situational interpretation or “meaning” of a for-
mal representation. Here, subjects’ understanding of the mathematical symbols
is assessed by their ability to express them in an alternative form, specifically,
in the language of simple events.

Finally, subjects were instructed to examine and, if necessary, correct poten-
tially flawed equations that appeared with a word problem. Only errors in sup-
porting relations were introduced, because earlier studies revealed subjects readily
recognized the form of the governing D = R X T equation. The erroneous equa-
tions described situations not present in the word problems given. This is referred
to as the debug problem. Its intended value is as a partial test of Prediction 4,
examining subjects’ abilities to evaluate the appropriateness of a formal expres-
sion to a referent situation and, if necessary, to alter the expression as the situa-
tion demands.
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The training exercises made use of the solve and debug problems but not of
the story problem. Instead, a multiple-choice task—the choice problem—was given
in which three possible solutions appeared along with a word problem statement.
Students had to select the correct solution set from among equations describing
other situations. Although there is clearly a much greater element of chance in
this problem type than in the other three, this problem tested subjects’ discrimi-
nation ability of formal expressions, further testing Prediction 4a.

Group Training

Subjects all participated in a review session that presented the basic principles
of the D = R x T equation, its physical and mathematical interpretations, and
its application to several representative examples of the solve variety of word
algebra problems. Whereas subjects in the equation group reviewed the strictly
algebraic approach of deducing equations directly from the problem texts without
the use of intermediate structures, the three tutor groups learned to use first the
graphic-based network approach presented earlier (see Figure 1). Equations were
then derived by copying down collinear subgraphs from the network. The net-
work approach was taught first by demonstration and then by practice on the
respective computer tutor (ANIMATE, the stopping-condition tutor, or the
network-only tutor).

Procedure

Fifty-six subjects organized into four groups of 14 each were pretested on their
knowledge of algebra. The pretest consisted of four problems: two of the solve
variety, one debug, and one story. Subjects then had either a brief review of tradi-
tional algebra (control group) or a 30-min tutorial on the network method. Sub-
jects next solved three training tasks—a solve, a debug, and a choice
problem—using the method introduced in their tutorial. Those working with a
computer tutor used either the complete ANIMATE computer program, the
stopping-condition tutor, or the network-only tutor. Finally, all subjects took an
identical posttest, with a format identical to that of the pretest, administered without
use of the computer tutors. An independent experiment revealed that the pretest
and the posttest were of comparable difficulty, F(1, 31) < 1.

RESULTS

Scoring

Pretest and posttest scores were measured by performance on two solve problems,
one debug problem, and one story problem, for a maximum score of 4 points
on each test. Training task score was measured by performance on a debug
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problem, a solve problem, and a choice problem, for a maximum score of 3 points.
Written stories had to describe completely the equations provided to receive 1
credit. Likewise, multiple-choice problems received a score of either 1 or 0. Partial
credit was assigned for all other problems involving the generating or correcting
of formal expressions (equations or networks). Full credit was determined by
the number of relations needed to specify the solution, so that an experienced
problem solver could, through algebraic manipulation, produce the correct nu-
merical answer for the quantity requested in the problem. In a typical “overtake”
problem, students could provide two correct distance—rate—time equations, for
example, but fail to specify correctly the “equal-distance” or “relative travel-time”
(i.e., delay) supporting relations and still receive partial credit of a % point. Equa-
tions could be specified separately (as in Equation Set 2) or as a single expres-
sion with proper substitutions made (as in Equation Set 1).

Error Analysis

An analysis of the types of errors produced and of their relative likelihood indi-
cates more specifically how each treatment affects student performance. We iden-
tify two classes of errors, those by omission and those by specification or form.¢
An error of omission was coded when there was the absence of a needed formal
relation, such as a relation linking travel times (e.g., T1 = T2) or distances.
An error of specification or form was coded if a relation between terms was present
in students’ solution protocol but that relation was inconsistent with the situation
described by the problem text. Along another dimension, errors may be made with
either (a) governing equations (i.e., D = R X T, a DRT error) or (b) inference-
based supporting relations. Thus, for the analyses to follow, we rely on four
categories of errors. An example of an error of specification for a governing re-
lation commonly made in subjects’ pretest solution protocols is the expression
RIT = D. These relations are cued by the overall problem schema associated
with the problem texts (cf. Kintsch & Greeno, 1985). A common specification
error for supporting relations is that D1 = D2 for a collision problem (such as
Problem 2 shown earlier). An omission error was coded if constraints such as
these were left out of a subject’s solution protocol entirely.

The frequency of errors for each of the four categories is broken down by
treatment and presented in Table 2 (for pretest) and Table 3 (for posttest). The
subtotal row contains the sum of all classifiable errors, that is, errors that fall
into one of the four categories just defined. The zotal row is the sum of all clas-
sifiable and unclassifiable errors and represents all errors made during problem
solving. These tables exclude any contribution from debug problems, because
the form in which these problems were presented heavily biased the data. In par-
ticular, debug problems never included an erroneous form of the governing

SThis class of errors is similar to the “errors of commission” referred to by Hall et al. (1989).



362  NATHAN, KINTSCH, YOUNG

TABLE 2
Frequency of Pretest DRT and Supporting-Relation
Errors for All Treatments (Excluding Debug Problems)

Treatment
Equation Stopping

Error Type Animation (Control) Network Condition Total
DRT

Form 20 11 10 17 58

Omit 7 11 3 7 28

Total 27 22 13 24 86
Supporting relations

Form 18 14 24 17 73

Omit 13 14 14 19 60

Total 31 28 38 36 133
Subtotal 58 50 51 60 219
Unclassified 10 2 s 0 17
Total 68 52 56 60 236

equation (D = R x T), only errors in the supporting relations. Also, these problems
always included some form of a supporting relation, which biased subjects away
from making errors of omission.

Table 2 reveals that the greatest number of pretest errors involved inference-
based supporting relations, a result that our model explicitly predicts (Prediction
1). In the 236 errors made by all subjects during the pretest, 17 were unclassi-

TABLE 3
Frequency of Posttest DRT and Supporting-Relation
Errors for All Treatments (Excluding Debug Problems)

Treatment
Equation Stopping

Error Type Animation (Control) Network Condition Total
DRT

Form 0 5 7 2 14

Omit 1 5 6 10 22

Total 1 10 13 12 36
Supporting relations

Form 12 19 20 10 61

Omit 5 26 23 14 68

Total 17 45 43 24 129
Subtotal 18 55 56 36 165
Unclassified 1 0 1 1 3
Total 19 55 57 37 168
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fied. Of those classified, 133 (or about 61 %) were labeled as errors pertaining
to uncued supporting relations, and 86 (about 39 %) were errors concerning govern-
ing relations (i.e., D = R X T schemas). Using the frequency data of Table 2
to determine the likelihood for subjects to have made certain types of errors, we
found that, from the 133 supporting relation errors, it was equally likely with
a 95% confidence interval for subjects to have made errors of omission (73, or
55% + 8.5%) and of improper form specification (60, or 45% + 8.5%).

Students tended to include D = R X T relations in their pretest performance
but had difficulty in specifying these correctly. Form errors and omissions at
pretest time were equally likely in the control group (which produced 50% of
each kind of error), whereas errors of form, 28 in all, were more likely for all
other groups. Tutor groups (with a range of 11% to 25% and an average of 20%
+ 15%) were as likely as control group subjects (with a39% + 17% likelihood)
toomit D = R X T.

In contrast to their pretest performance, students on average made fewer er-
rors with governing relations during the posttest. Of the 384 classifiable errors
made in both tests (219 in the pretest and 165 in the posttest), 86 or 22.4% were
pretest DRT errors. This percentage dropped dramatically at posttest, when only
36, or 9.3%, concerned DRT expressions. This can be attributed largely to the
exposure students had during training when they encountered many properly speci-
fied D = R x Tequations. Even though we made no predictions concerning the
relative likelihood of erring on governing equations, it is worthwhile comparing
the network, stopping-condition, and equation groups, which were equally likely
to make DRT errors at posttest. Table 3 shows that, of the 165 classifiable post-
test errors made by all subjects, stopping-condition subjects showed a 7.3% +
4% likelihood of making DRT errors (with a frequency of 12), which was not
reliably different at the 5% level from either the network group (with 7.9% +
4%, and a frequency of 13) or the control group (with 6.1% + 3.6%, and a fre-
quency of 10). Although tutor users were always presented with correct govern-
ing relations through the “equation palette” (Figure 4), this did not give them any
advantage over the free-form equation group. The group that stands out in its
performance is the animation group, which demonstrated a substantially lower
probability of making DRT errors (with a likelihood of only 0.6% + 1%, and
a frequency of 1, which is not significantly different from zero).

Our theory makes some very clear predictions about the probability of mak-
ing errors with supporting relations after exposure to the different treatments.
Prediction 1a holds that those who used situation-based tutors —the animation and
stopping-condition groups—should be expected to have a substantially lower likeli-
hood of omitting inference-based supporting relations. Prediction 1b states fur-
ther that those who explicitly relate their situational understanding to their
mathematical knowledge, as animation students have done, should exhibit the
greatest decline in their misspecification of these relations.

A comparison of the posttest data of Table 3 and the pretest data of Table 2
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shows that the probability of making a supporting-relation error at posttest in-
creased for those groups that did not use a situation-based tutoring environment.
The control group experienced increases from pretest to posttest in both errors
of specification (by some 35%, from 14 to 19) and errors of omission (by more
than 85%, from 14 to 26). Network subjects were similarly more likely to omit
supporting relations at posttest, increasing 64 %, from 14 errors at pretest to 23
errors at posttest. By contrast, stopping-condition and animation tutor users showed
substantial drops in the likelihood of omitting these inference-based equations,
a result that supports Prediction 1a. The stopping-condition group went from 19
to 14 errors, a 26% drop, whereas the animation group went from making 13
errors at pretest to 5 at posttest, a 61.5% decrease. Students in the animation group,
with 5 errors and a 3% + 2.6% probability of omitting supporting relations, were
less likely than students in any of the non-situation-based conditions to omit a
supporting relation from a solution, but not reliably different at the 5% level from
the 14 errors and 8.5% + 4% probability of the stopping-condition group. The
network and control groups, with a 14% + 5% probability and a 16% + 5.6%
probability of making this error, respectively, did not make substantially more
errors than the stopping-condition group. '

Although these results support the problem model, this last finding runs coun-
ter to the expectations expressed in Prediction la. The stopping-condition group
showed serious difficulty in generating supporting relations. Their pretest per-
formance was poorest in this arena, and, although they showed substantial im-
provement, they failed to perform better than the network and control groups
at posttest. The omissions made by the stopping-condition group were, predict-
ably enough, not for stopping-condition expressions but for expressions regard-
ing the relative starting times of characters (i.e., delay equations), for which they
received no obvious advantage.

‘When stopping-condition subjects did include supporting relations in their pro-
tocols, however, they tended to get them right for the given situation. They also
showed the greatest decrease in making errors of formulation for supporting re-
lations, some 41 %, dropping from 17 errors to 10 errors. The animation group
demonstrated comparable improvement, dropping 33%, from 18 to 12 errors.
The network group experienced a less extreme decline, 17%, in the frequency
of these errors, whereas, as noted previously, the control group had a marked
increase. These improvements are partially consistent with Prediction 1b. We
anticipated that exposure to the ANIMATE environment would improve students’
ability to formulate situationally inferred expressions more effectively than any
other treatment. Apparently, the nonanimation tutors, particularly in the stop-
ping condition, helped substantially in this regard. Yet, even with these large
improvements and a 2:1 difference in error frequency between the most error-
prone network group (witha 12% + 5% probability of erring) and the least error-
prone stopping-condition group (with a 6% + 3.6% probability), there were no
reliable group differences (at the 5% level) in the likelihood of making these errors.
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These findings largely support our theoretical predictions (1a and 1b) for the
role that a situation-based environment can play in improving the generation and
formulation of a formal problem model. Exposure to the ANIMATE environ-
ment clearly helped students to generate the necessary inferences for a solution;
but a similar advantage was not consistently afforded by the stopping-condition
tutor.

Pretest and Posttest Performance

We first consider the results of the pretests and posttests. Because these two tests
were in every respect identical for the four groups of subjects, they provide the
fairest measure for the overall effectiveness of the treatment. Table 4 shows the
results of these tests, as well as subjects’ performance on the three training tasks
for the four experimental treatments. For each treatment group, we sce its size
(), the set of problem types, and the proportion correct for each type of problem
when it appeared in the pretest, the experimental training, and then the posttest.
For training tasks, choice problems were used instead of story-type problems;
their measures appear in square brackets to highlight this substitution. Data for
each treatment include a row describing the test or training task totals for that
treatment. The solve figures reported for pretest and posttest are obtained by aver-
aging subjects’ performance on two solve problems. Thus, pretest and posttest
totals are obtained by adding twice that figure to the reported score for debug
and story problems, resulting in a maximum of 4 test points. Totals for the train-
ing tasks are computed by adding the proportion correct for each of the solve,
debug, and choice problems. The last section of Table 4 reports the mean perform-
ance for all treatment groups together on each of the problem types.

A one-way within-subject analysis of variance (ANOVA) with test score
as the dependent measure produced a highly significant effect of time of test,
indicating that, overall, subjects improved from pretest to posttest, F(1, 52) =
47.7, p < .0001, MS, = 7.7. A two-way ANOVA with treatment group as a
between-subjects variable, time of test (pretest vs. posttest) as a within-subject
variable, and solution performance as the dependent variable showed a signifi-
cant Time of Test X Treatment interaction, F(3, 52) = 4.5, p < .01, MS, =
0.7. This indicates a difference in the effectiveness of the training for the four
groups.

Post hoc comparisons showed the particular differences responsible for the
ANOVA results. A Newman-Keuls test comparing improvement scores indicat-
ed that ANIMATE and network-only tutor users improved significantly (p <
.05) more than those in the control group (57.5% and 30%, vs. a 9% improve-
ment, respectively). ANIMATE users also improved significantly more than
nonanimation tutor users: the stopping-condition and network-only treatments.
The mean performance improvements of the nonanimation tutor users did not
differ significantly from each other, and although the stopping-condition group
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TABLE 4
Mean Proportion Correct (and Standard Deviations) on Pretest, Training,
and Posttest Problems for Each Treatment

Performance Scores

Treatment Group n Problem Type Pretest Training Posttest
Equation (control) 14 Solve .62 (25) .57 (.39) .66 (.30)
Debug 21 (32) .50 (.39) .57 (.51
Story/[Choice] 29 (47 [.43 (.51)] 21 (.43)
Total? 1.74 (.78) 1.5 (.90) 2.1 (.93)
Animation 14 Solve 21 (.38) .89 (.13) .85 (.17)
Debug A1 (.29) .75 (.38) .64 (.50)
Story/[Choice] 21 (42) [.93 (.27)] 1 (.47
Total® 74 (1.2) 2.57 (.48) 3.05 (.84)
Stopping condition 14 Solve 48 (.35) .82 (.28) 72 (31
Debug 39 (.36) 43 (.27 54 (.50)
Story/[Choice] 07 (27) .50 (.52)] 43 (.51
Total® 1.42 (.82) 1.75 (.74) 2.41 (1.2)
Network 14 Solve .38 (.46) .84 (.19) 71 (32)
Debug .18 (.29) .61 (.40) 64 (.50)
Story/[Choice] 07 (.27 [.36 (.50)] .14 (.36)
Total® 1.01 (.97) 1.81 (.87) 2.2 (1.1
All groups 56 Solve 42 (.39) .78 (.28) 74 (.28)
Debug 22 (32) 57 (.27) .60 (.49)
Story/[Choice] .16 (.37) [.55 (.50)] .38 (.49)
Total? 1.22 (1.0) 1.9 (.85) 2.46 (1.1)

2Total pretest and posttest scores are computed by adding two solve problems (twice the report-
ed proportion), one debug problem, and one story problem. Percentages reported for total test scores
are out of 4 points total. Total training task scores are computed by adding one solve problem, one
debug problem, and one choice problem. Percentages for total training task scores are out of 3 points.

improved more than the control group, this difference was not significant at the
.05 level.

These results must be tempered by the performance of the equation group on
the pretest, which, in a one-way ANOVA with test scores as the dependent meas-
ure, was found to score significantly higher than the average of the three tutor
groups, F(1, 52) = 4.3, p < .05, MS, = 0.7, whereas the other treatments did
not differ from each other. Although this difference can only be attributed to ran-
dom effects in the selection of subjects, because the pretest preceded even the
algebraic review, it does affect the interpretation of these results somewhat.
Nevertheless, even 30 min of training with ANIMATE led to more than six times
the improvement of standard procedures for solving problems in the word al-
gebra tests we gave. Furthermore, the performance improvement of the anima-
tion group was greater than that of the other tutoring groups. This finding directly
supports the view that exposure to situation-based feedback for equations serves
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as an effective learning tool for algebra students, its effects lasting beyond the
removal of that feedback.

One could easily suppose that, after more than a thousand hours of school-
based practice with standard algebraic methods, a brief session with this new ap-
proach might only serve to confuse the students. Instead, the exposure to the net-
work approach proved quite helpful on the posttest, where problems were solved
without the help of the tutor. Although our finding that network students improved
more than control group subjects is counter to our theoretical expectations and
to previously reported results (Nathan, 1988), this must be tempered with the
understanding that the sheer novelty of a computer-based training environment
for mathematics may have advantages of its own. Our interpretation is that there
is an attentional advantage incurred from use of the network-only tutor for
mathematics problem solving. This made the mathematics review more salient
to students and likely increased their motivation to learn and perform.

Improvements can be specifically ascribed to posttest performance on the solve
and story problems. Two solve problems were given in the posttest. Because no
reliable differences were found between the two problems, all subsequent analy-
ses were based on their combined scores. Statistical analyses revealed a main
effect of problem type, F(2, 104) = 12.9, p < .001, MS, = 1.9, with no in-
teraction with time of test. A Newman-Keuls post hoc comparison (p < .05)
revealed that solve problems were easiest at pretest and continued to be so at
posttest. A postexperiment interview revealed that this was a familiar task for
all the students.

A one-way between-subjects analysis of covariance (ANCOVA) was conducted,
with posttest performance on the average score of the two solve problems as the
dependent measure, subjects’ pretest score as the covariate, and treatment as the
between-subjects variable. This test revealed a performance difference as a func-
tion of treatment, F(3, 52) = 2.9, p < .05, MS, = 0.32. A subsequent post hoc
comparison of means adjusted for pretest performance (Judd & McClelland, 1989)
revealed that this significant difference was due to differences between the ani-
mation group and each of the other groups, as indicated by the Newman—Keuls
critical difference test (p < .05). This finding supports Prediction 2 that the
animation-based feedback is an effective aid in generating solutions for word
problems, even when the feedback is removed.

Further post hoc analyses were performed on data from the control group,
comparing those who used pictures to solve or set up the various problems with
those who did not. This comparison is important because it may reveal that some
members of the equation group naturally apply some of the situation-based prin-
ciples incorporated in the ANIMATE tutor. A contrast-coded factor (Judd &
McClelland, 1989) that encoded the use or absence of pictures as part of the so-
lution process was used. If picture use had a reliable effect, the mean perform-
ance of picture users would differ significantly from that for subjects who did
not use pictures. This factor did not reveal any new main effects or interactions.



368  NATHAN, KINTSCH, YOUNG

This finding is consistent with earlier work by Mayer (1982). As in Mayer’s study,
picture drawing received no feedback for correctness or appropriateness. Fur-
ther, there was no compelling reason for control subjects to make sure that the
picture fit with the formal expressions. In contrast, the equation-driven anima-
tion in the ANIMATE program allows students to “scaffold” from animated pic-
tures to a mental representation having a strong tie to the formal equations.

There were no measurable differences in problem-solving performance at-
tributable to treatment for the debug problem. Our initial hypothesis (Prediction
4a) was that subjects in the animation group, by receiving advantageous feed-
back regarding the situational inappropriateness of the flawed equations, would
learn to constrain their search for the detection of errors. In addition, we expect-
ed that an improved ability to interpret erroneous equations, through practice in
the ANIMATE learning environment, would enhance subjects’ ability to correct
these found errors (Prediction 4b). Although improvement was greatest for the
animation group, this difference was not significant at the .05 level.

The overall correct performance on the posttest for the debug problem was
60% , with only 64 % of the highest scoring groups (network and animation) solving
it correctly (see Table 4); so the ceiling on performance was not nearly achieved.
The analyses indicate that subjects in all treatment groups performed compara-
bly on the debug problem at pretest time, F(3, 52) < 1.0, and continued to do
so at posttest. A post hoc test comparing students’ behavior in this problem re-
veals, however, that animation subjects were significantly more likely than any
other treatment group to correct a buggy equation once they detected it, #(52)
=2.24, p < .05, MS, = 1.0. This suggests that, although the learning environ-
ment may not support transfer of superior error-detection skills (owing perhaps
to the role the animation plays in highlighting this for the student), it does aid
them in respecifying erroneous expressions. This latter finding provides partial
support for Prediction 4b.

For the final problem, a one-way between-subjects ANCOVA was performed
with posttest performance on the story problem serving as the dependent meas-
ure, pretest score as the covariate, and treatment as the between-subjects vari-
able. This analysis gave a significant main effect of treatment as a predictor of
performance in solving the story problem, F(3, 52) = 2.6, p < .05, MS, =
0.18. A subsequent post hoc comparison using the Newman—Keuls test revealed
that the animation group performed significantly higher than the network and con-
trol groups (p < .05) but not higher than the stopping-condition group. The
stopping-condition group was found, however, to perform no better than the net-
work or control groups.

This result largely supports Prediction 3. This story-writing problem is perhaps
the most situation-oriented of the three tasks. Thus, it may come as no surprise
that the greater exposure to situation-level processing provided by the animation
and stopping-condition tutors helped subjects most in this novel task. Although
we expected the animation component to be the most effective means for teach-
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ing students to interpret equations situationally, it appears that merely setting up
the situation and assigning a situational role to at least one supporting relation,
as is done in the stopping-condition tutor, also provided an added advantage. This
advantage, however, is not large enough to distinguish it statistically from the
performance of the control group. The highest level of performance seemed to
arise from exposure to an environment that provided both setting up a situation
and executing a simulation of the equations, however.

This result is very informative because it seems to identify an area in which
the explicit feedback through animation does not produce a clear advantage above
and beyond setting up a situation. This is because students in the latter context
are already engaged in the necessary situation-based reasoning. Such a finding
is consistent with results of Lewis (1989), who used a simple diagram-based
method that highlighted the relations within the problem situation to improve stu-
dents’ ability to construct proper arithmetic expressions from word problems. Find-
ings such as we report here and those reported by Lewis are useful for the designers
of mathematics curricula and computer-based learning environments. It is not
necessarily the case that the most interactive, simulation-based environments will
lead to the greatest problem-solving performance. This result does not conclude
otherwise, either, especially with the small number of subjects we have used in
an experimental setting. Rather, it leaves the question open and demands that
further experimentation be done.

Training Task Performance

For problems solved during training, the results are in agreement with the pretest
and posttest scores. The fifth column of Table 4 shows the results for the three
individual training tasks solved by the experimental treatment groups. Because
choice problems were used instead of story problems, as in the pretest and post-
test, they appear in the story problem row in square brackets. A two-way AN-
COVA (with treatment as the between-subjects variable, problem type as the
within-subject variable, pretest score as the covariate, and training task score as
the dependent variable) shows a main effect of problem type, F(2, 104) = 8.17,
p < .005, MS, = 0.9. A Newman—Keuls test (p < .05) comparing problem
performance indicated that the solve problem was least difficult, with no meas-
urable difference between the debug and choice problems. There was also a main
effect of treatment, F(3, 51) = 5, p < .005, MS, = 1. A subsequent
Newman—Keuls test (p < .05) revealed more specifically that animation students
performed better than either those using the nonanimation tutors or those in the
control group. There were no other statistical differences at the .05 level, although
the control group tended to perform below the level of the network and stopping-
conditions groups.

Additionally, there was a significant Treatment X Problem Type interaction,
F(6, 104) = 2.2, p < .05, MS, = 0.24. Post hoc comparisons using the New-
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man-Keuls test (p < .05) showed that this interaction was the result of two fac-
tors. First, the animation group demonstrated superior performance over all the
other groups in solving the choice problem, with no other detectable group differ-
ences for this problem type. Thus, they showed greater ability at discriminating
among solutions for a given problem situation. In fact, ANIMATE users, with
a proportion correct of .93 + .13, were the only ones to perform reliably (at
the 95% level) above chance. The confidence intervals around the performances
of the stopping-condition group (at .5 + .26), the network group (at .36 + .25),
and the control group (at .43 + .26) all included the .33 proportion correct one
would expect from chance selection. Second, the equation group showed inferi-
or performance compared with all other groups in generating solution-enabling
equations, as measured by performance on the solve problem. No other differ-
ences in solve-problem performance were found among the three tutor groups,
although the difference between the nonanimation tutor users and the ANIMATE
users approached statistical significance. The solve-problem results with the var-
ious tutors were expected to be substantially different, the expectation being that
situational feedback would act as a superior aid in performance. This was not
the case. Instead, all tutors seemed to help users substantially, especially com-
pared with control-group subjects. Even the stripped-down network-only tutor,
with no situational component, helped students in the easiest of the problems.
As reported earlier, however, this higher level of performance stays with ANI-
MATE users far more than with the other tutor users when the problem-solving
aids are taken away.

Skills for detecting errors in buggy expressions were not found to be signifi-
cantly better for any one group, as measured by performance on the debug
problem. These performance data are in line with the findings for the posttest
results for debug problems reported earlier. As with those resuits, we failed to
find strong support for Prediction 4, that debugging ability is superior for ANI-
MATE users. Performance on the choice problem partially supports this in the
area of solution discrimination, but it is not compelling enough to refute the null
finding with students’ performances on the debug problem.

For every task, subjects who worked with the complete ANIMATE tutor scored
at the same level or at a higher level than those who did not have access to the
animation. Their problem comprehension —as measured by their inferencing abil-
ities, performance in generating formal equations from stories, and writing sto-
ries to match formal equations—was strongest, despite their brief exposure to.
this novel learning environment. Stopping-condition students, as encouraged by
their problem-solving environment to reason situationally about certain equations,
showed performance improvements similar to those of the animation students for
the story-generation task. Even in the debugging task, animation students showed
performance changes paralleled by their improvement in other problems. These
improvements were matched by all subjects, however, and so led to no measur-
able treatment differences at posttest time. This lack of advantage in debug per-
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formance, we speculate, is due to subjects’ general strategies of formula recogni-
tion rather than pure mathematical understanding. The 53 % improvement by ani-
mation students compared with a 36 % improvement by the control group is still
noteworthy, however. Animation subjects’ greater likelihood to correct buggy
equations once they were detected suggests that there are effects due to the train-
ing, although we cannot make strong claims about what they are from these data.

DISCUSSION

Drawing on earlier work in this area, we have presented a theory of the cognitive
processes that we believe are necessary to achieve competent word-problem-
solving behavior. This theory states that problem comprehension relies on a situ-
ational understanding of the problem at hand and its relation to one’s mathemati-
cal knowledge. The theory assumes that students first understand the situations
described by the cover story of the problems. Problem comprehension, in turn,
provides strong support for the reasoning that is often needed to produce a proper
solution. We have also reviewed interpretations of learning and instruction that
specify how this competent behavior can be taught to students. A tutoring en-
vironment based on this approach was then described; it actively engaged stu-
dents in the process of explicitly coordinating a formal representation of the
problem solution with a qualitative representation of the situation, as depicted
by simple computer animation. This situation-based tutor served as an indirect
test of our model of problem comprehension. Performance of students using it
to solve a variety of problems was compared with subjects in other conditions
that provided varying levels of integration of the situation and the formal problem
constraints.

The analysis of students’ errors and problem-solving performance helps to high-
light the ways a situation-based learning environment can and cannot support im-
provement in problem comprehension and solution generation. From these results,
we find that some of our model predictions are correct. The inferences that stu-
dents must make to fully specify the solution to a word problem are indeed difficult
and contribute greatly to students’ low pretest performances. The model explicit-
ly predicted (Prediction 1a) our finding that students’ pretest solutions would tend
to lack those statements that depend on making and expressing inferences neces-
sary for solutions. We also expected (Prediction 1b) that, by working in an en-
vironment that encourages situation-based reasoning as a normal part of the
solution process, students would demonstrate an improved ability to make these
inferences and specify them correctly. Our empirical findings bear this out. The
frequency of inference-based errors at posttest for students working with either
of the two situation-oriented tutors decreased substantially, whereas the errors
of students in the non-situation-oriented treatments—the network and control
groups—actually increased. One possible reason for this increase is that the
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fatigue level of students performing mathematics with no externally provided en-
gagement may have been much higher at posttest time. Although the animation
group did not make substantially fewer inference-based errors than the stopping-
condition group (which set up a static depiction of the problem situation), it was
consistently the group least likely to make such errors in general.

We also made a series of predictions about subjects’ problem-solving behaviors.
We expected that the situation-based reasoning conveyed by exposure to the ANI-
MATE tutoring environment would help students generate equations from texts
(Prediction 2), generate texts from equations (Prediction 3), and detect and cor-
rect erroneous solution equations for a given situation. Evidence to support Predic-
tions 2 and 3 is found in the data from performance on the solve and story
problems. In support of Prediction 4a, the ANIMATE group outperformed all
others in its ability to recognize a correct solution set for a situation, as measured
by performance in the choice problem. In partial support of Prediction 4b, we
found that animation subjects had the greatest error-correction ability once an
error had been detected. This suggests that some important changes in conceptu-
al understanding occurred for animation students that were not present in the other
conditions. However, the expected advantage of animation subjects in detecting
errors without the use of the tutor, as stated in Prediction 4b, was not found in
the debug problem data.

Work on skill transfer in LISP programming has shown similar findings. Posi-
tive skill transfer between solution generation (writing a LISP function) and debug-
ging skill (correcting a buggy function) is specific to the components these two
skills have in common. Kessler (1988, reported in Singley & Anderson, 1989)
found that writing the appropriate fragment of a function was common to both
tasks and so exhibited a high degree of positive transfer. Uncommon components,
such as isolating the error of a buggy function, did not transfer as strongly. In
algebra-word-problem solving, we have found that subjects who perform well
and demonstrate large improvements in solution generation are also good at gener-
ating the correct expressions for a set of buggy equations. The detection of these
errors does not transfer, however.

Solving algebra word problems is not just a matter of getting the formalism
right. It seems to depend on understanding how this formalism is rooted in a real-
world situation. Most encouraging about our results are the indications that a
situation-based learning environment may indeed help overcome students’ tend-
encies in traditional mathematics instruction to learn decontextualized formal
procedures. Instead, such an environment may help them to achieve the concep-
tual understanding necessary to reason mathematically. The brief training our
subjects received while using ANIMATE enabled them to excel in certain problem-
solving tasks, indicating that it is an effective aid in solving distance-rate-time
word problems. The improvement that animation subjects exhibited on the post-
test, where they did not have access to the tutoring system, was also remarkable.
ANIMATE, although particularly useful on the most common type of problems

s s i s : ST
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involving translation from words to formal equations, proved as effective in boost-
ing performance on the unusual and unfamiliar story-writing problem.

It is not clear what general strategies students make use of in the story-writing
task, given the novelty of the problem. This task is the most situation-oriented,
demanding from students, not a formal expression, but a linguistic description
of a situation initially specified mathematically. We view this task as reciprocal
to the solve task for problem comprehension. That the animation and stopping-
condition groups show no reliable performance differences in this task suggests
that animation feedback is of limited additional impact for such a task, once sub-
jects are engaged in the reasoning needed for setting up a static depiction of the
situation. This may have important pedagogical implications when one is seek-
ing to develop a software environment with minimal functionality. For more tradi-
tional word algebra problem-solving tasks, as exemplified by the solve problems,
the impact of animation-based feedback is apparent. The ANIMATE tutoring sys-
tem is clearly helpful in bringing about significant performance improvements.

The experimental results seem to support the notion that providing a weakly
structured environment that makes an explicit correspondence between the sym-
bols of an algebraic expression and a simple depiction of the situation described
enables students to improve their performance with distance—rate—time problems.
The problem model-situation model correspondence seems teachable to students.
When the situation is represented by a computer animation, subjects perform best
of all. This advantage appears to persist even after the training wheels are re-
moved. We have tested this on a limited set of problems to date, and the results
are encouraging enough to invite experimentation on a wider range of problems.

Although many questions remain, we have obtained through this theory a new
understanding of how students solve word problems. A text-comprehension-based
view of problem solving highlights the origin of certain types of errors and is
a valuable perspective when seeking their remedy. Further exploration is needed
to determine what facets of problem-solving support help students most. It is
noteworthy that using ANIMATE gave more to our subjects than “just another
trick” (i.e., the intermediate network representation) for solving word problems.
Furthermore, it was not enough to have students merely consider what a situa-
tion might demand (as was done in the stopping-condition group). Many equation-
group subjects drew pictures; their final performance was still below that of the
animation group. Greeno’s (1983) view of the role of conceptual entities in problem
solving is relevant here. Conceptual entities are cognitive structures used to
represent and reason about a problem in a direct way. The set of conceptual enti-
ties held by a problem solver determines the kind of information available for
reasoning about a problem using general methods. Certain instructional settings
can facilitate the construction of a solution-enabling set. Greeno identified two
means of acquiring these: observation and computation. ANIMATE provides stu-
dents with an opportunity to acquire the concepts of travel time, relative stafting
times, stopping conditions, and so on, through both of these means. Qur aim has
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been to provide students with these conceptual entities so that the general reason-
ing methods they have can be applied when “canned” problem-solving strategies
(e.g., translation rules) prove to be difficult to apply or ineffective.

What can the work presented here tell us about the design of learning environ-
ments? The last 10 years have witnessed a move toward computer-based instruc-
tion. Some of the most promising systems have embedded in them large amounts
of domain-specific knowledge for assessing student performance and supporting
meaningful feedback and explanation (e.g., Anderson et al., 1989; Reiser et al.,
1989). The development of such systems represents an enormous effort in
knowledge engineering, computer system development, and user testing. These
systems are restricted to the domains for which there are detailed models of stu-
dents’ problem-solving behavior. Although some of these systems make exten-
sive use of experimental work to determine the amount and form of knowledge

- they use, these are the exception rather than the rule (Wenger, 1987). This is
not a beneficial state of affairs, but it is understandable, because the experimen-
tal effort needed to accumulate and codify the domain-specific knowledge can
be greater than the task of building the tutor itself.

In the design of the ANIMATE tutoring system, we have attempted to tease
apart the learning environment from any system-provided guidance. ANIMATE
contains little in the way of domain knowledge and, outside its ability to inform
students about the self-consistency of the network (e.g., as in Figure 6), ANI-
MATE uses none of this knowledge to assess performance or direct a student’s
solution approach. Rather, ANIMATE relies on students’ abilities to assess their
own performance in mathematical problem solving by presenting the mathemat-
ics in a form that is more accessible to them. In this sense, it is an attempt at
a minimalist system for supporting a difficult area of instruction —algebra-word-
problem solving. It is possible that some students could also benefit from
knowledge-based explanation or guidance during the construction of a formal
problem model or specification of the associated animation. It may be advanta-
geous to introduce knowledge-based guidance selectively at a later time and de-
termine empirically where such support is most helpful. The architecture of the
ANIMATE system supports such experimentation.

It is no accident that the form we chose for presenting mathematical ideas is
a graphic one, intended to be like students’ situation models of the story problems.
In our view, comprehension failures are central to the difficulty of word problems.
Consequently, we have built on text comprehension research in our attempt to
model student performance. Within this framework, the kinds of mental represen-
tations that students form are key to predicting their performance in answering
questions, drawing inferences, and using their knowledge to solve problems. We
have hypothesized that two mental representations are most helpful in supporting
mathematical reasoning: the problem model and the situation model. Further-
more, it is not sufficient that students form both of these representations in the
course of reading and solving a word problem. They must also integrate infor-
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mation from both to assign sitnation-based meaning to formal expressions and
interpret mathematical statements situationally. From this perspective, we have
developed a tutoring environment that attempts to bring students’ representations
of the situation and the mathematics together through animation-based feedback.
Our experimental results are limited but promising.

The experimental findings support our psychological model, as instantiated
by the ANIMATE tutoring environment, in four of six predictions. But, there
are several important shortcomings. The ANIMATE system does not produce
students with superior debugging behavior or bring about exemplary problem-
solving behavior. Even though the animation group showed marked improve-
ments in a variety of problem types, the error rate was still high at posttest. ANI-
MATE students’ reasoning, too, left much room for improvement. Although their
abilities to generate and specify inference-based supporting relations improved
appreciably, even in the face of declining performance for some groups, the likeli-
hood of misformulating supporting relations was still high. The ANIMATE sys-
tem has many limitations at this time. Students do not receive all the flexibility
possible in a computer system (cf. the LOGO system), and the situational sup-
port is not always presented in the most ecological manner. The persistence of
errors in the animation students’ solution protocols may thus be due to limitations
of our model of problem comprehension or to our instantiation of that model in
the tutor.

What does this work tell us about methods for evaluating students’ problem-
solving abilities? Had we used only the most typical measures of problem-solving
ability (performance on the solve problem), we would have drawn many errone-
ous conclusions with regard to the effect of the ANIMATE system on students’
learning. With just these results, it would seem that the ANIMATE tutor was
clearly superior to the other treatments. By including problems that had students
generate stories from equations and evaluate and debug problem solutions, a more
complete, albeit more complicated, picture has emerged. We also found it valu-
able to look not only at problem-solving performance measures but also at meas-
ures of problem comprehension, which were chiefly linked to the errors students
made in their solution protocols. Detailed analyses such as those presented by
Hall et al. (1989) can provide further understanding of the reasoning processes
of students and can be used to further inform cognitive models and instructional
approaches. .

There were many statistical comparisons that did not clearly favor the problem
comprehension model. Yet, in all, the performance of the animation group on
a range of tasks consistently ranked at or near the top, and these subjects consis-
tently improved. Most notably, students using the experimental ANIMATE en-
vironment for less than an hour performed better than control subjects on the
most common form of translation task (the solve problem). Underlying this is
the improved ability of subjects to make certain necessary situation-based infer-
ences and express them algebraically. We take these findings as evidence in favor
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of our model. Still, the empirical results are clearly wanting. As stated earlier,
we chose an indirect method for testing our theory, using tutor users as our
spokespeople. There are several layers between our theoretical predictions and
the data. It is not possible to tell if these inadequacies are due to inherent limita-
tions of the model or to problems with the current instantiation of it. These results
are very promising, however, and we conclude from them that it is worthwhile
to seek more direct methods for testing this theory.
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APPENDIX A
Problem Models for Examples From Each

of Mayer’s (1981) Rate Families

FAMILY I: AMOUNT-PER-TIME RATE

Current

The current in a stream moves at a speed of 4 km/h. A boat travels 4 km upstream
and 12 km downstream in a total time of 2 hours. What is the speed of the boat in
still water?

4/(s-4)+12/(s+4) =2

Down

work

Mary can do a job in 5 hours and Jane can do the job in 4 hours. If they work
together, how long will they take to do the job if Jane starts 1 hour after Mary?

w1

1= 1/5%t+1/74%(t-1)
R 1/h
T: h
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FAMILY li: COST-PER-UNIT RATE

Fixed Cost

Sixteen balls of yarn can be bought from a mail order house for
29c each plus $2.72 for postage. What does the total order cost?

[ (29%16)+2.72=c |

C. 3

R: $/piece

U: piece

Cost Postage Total

Dry Mixture

A grocer mixes peanuts worth $1.65 per pound and almonds worth
$2.10 per pound. She wants 30 pounds of the mixture worth $1.83 a
pound. How many pounds of each should the grocer include in the

mixture?
Cost: § -
Price: $/1b
Amount: 1bs =
30-p
Peanuts Almond Mixture

1.65p + 2.10(30-p) = 1.83%30

L}
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FAMILY lil: PORTION-TO-TOTAL-COST RATE

Suppose $750 is invested at 5% annually. What amount will be in the account
at the end of 2 years?

750+(750%.05)=P2
P2+(P2*05) = a

- $

R: %

P:$

Year | Year 2

An appliance store drops the price of acertain TV 18% to a sale price of $410
what was the former price?

Part: § 410

R: %

Total: $

Old Price Discount Sale Price
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FAMILY [V: AMOUNT-TO-AMOUNT RATE

Inverse Variation .

The volume of gas varies inversely with the pressure on it. The volume of
gas is 200 cc under a pressure of 32 kg/sqcm  what will be its volume
under a pressure of 4C kg/sgcm ?

Constant

32%200=40%v

Pressure

Volume

Wet Mixture :

A chemist has 3 liters of a 5% acid solution. How many liters of a 20% acid
solution must be added to make a mixture which is 10% acid?

Amount: Liters

R: %

U: Liters

A B Mixture

15+ 2%a = 10%(3+2a)
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APPENDIX B

Experimental Materials for Pretest, Posttest,
and Training Tasks

Pretest

Problem 1. Write the appropriate equation or set of equations that can be used
to solve the following problems. (You do NOT need to do algebra or solve
for any values)

Problem la. Two planes start at the same time leaving from cities thirty six
hundred miles apart. They travel toward each other, one at four hundred miles
per hour and the other at seven hundred miles per hour. If the planes leave
at Noon, how long will the air traffic controller have to warn the planes of
a collision?

Problem 1b. Alan leaves San Francisco at 6 a.m. on a train to Los Angeles
to give a presentation. The two cities are about six hundred miles apart. The
train travels at one hundred and fifty miles per hour. Phyllis realizes that he
left his slides at home and will need them when he arrives. If Phyllis leaves
at 8 am on a plane that travels at three hundred miles per hour and the plane
and train arrive at the same station, how long will Phyllis have to wait for Alan
to arrive?

Problem 2. Below you are given a word problem and a possible solution to it
in the form of a set of equations. The equations may be flawed, however. Please
correct the equations so that someone could use them to solve the problem as
given.

Vanna and Crystal are in a four thousand mile cross country car race. Van-
na starts immediately and travels at eighty five miles per hour. Crystal starts
in the second wave of cars because she did not place as high in the time
trials. The second wave leaves one hour later. If Crystal drives at one
hundred and fifteen miles per hour, how long will it take her to pass Vanna?

Dl =85 x Tl
D2 =115 x T2
Tl =T2 -1

D1 + D2 = 4000

Problem 3. Below you are given a set of equations that describes a situation
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mathematically. Write a short story that could be a word problem for the given
equations. Use Bob as character 1 and Rebecca as character 2 in the word
problem. Try to keep it to 3 sentences or less.

D1 =25 x Tl
D2 =20 x (T1 + 1)
D1 + D2 = 80

Training Task: Tutor Groups

Problem 1. Select one of the three choices below that you feel is the best solu-
tion for the word problem given.

A train travels west at two hundred and fifty miles per hour. Another train
leaves on a parallel course two hours later and travels west at five hundred

miles per hour. How far will the second train travel when it overtakes the
first train?

A. D: miles D1 = D2
R: m/h @D @)O
. - +
T: hours T;\ /:-r 5\ @
N
B. D: miles D1 — D2

R: m/h @D @




386  NATHAN, KINTSCH, YOUNG

C.

Problem 2. Please construct the correct network for the word problem given.
Draw any diagrams or pictures that may help. When you are satisfied with
the drawn network, write down the equations that can be extracted from the
network to solve the problem.

Bill hates flies. There is a fly next to Bill. His scream startles the fly, which
takes off to the left immediately, traveling at one hundred and fifty feet
per minute. Bill freezes for one minute and runs to the right at one hundred

feet per minute. How long will it take Bill to be three hundred feet away
from the fly?

Problem 3. The following network is intended to describe the word problem
below. The network may have flaws, however. Correct any flaws by writing

directly on the network. When done, copy over the resulting equations from
the corrected network.

Ant Copter
+ /'—'\ =

D: miles D1 D2 @
N

R: m/h @ @D

* *

T: hours T — ﬂl" 2\ _ @

N/

A huge ant terrorizes San Francisco. It travels east toward Denver, which
is twenty four hundred miles away, at four hundred miles per hour. The
Army learns of this and sends a helicopter from Denver an hour later to
intercept. It travels at six hundred miles per hour. If the ant left at two p.m.,
ignoring time changes, when will the ant and helicopter meet?
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Training Tasks: Equation Group

Problem 1. Select one of the three choices below that you feel is the best solu-
tion for the word problem given.

A train travels west at two hundred and fifty miles per hour. Another train
leaves on a parallel course two hours later and travels west at five hundred
miles per hour. How far will the second train travel when it overtakes the
first train?

A.
D1 =250 x T1
D2 = 500 x T2
D1 = D2
Tl =T2 +2
B.
D1 =250 x T1
D2 =500 x T2
D1 = D2
Tl =T2 -2
C.
D1 =250 x T1
D2 = 500 x T2
D1 = D2
Tl + T2 =2

Problem 2. Please construct the correct network for the word problem given.
Draw any diagrams or pictures that may help. When you are satisfied with
the drawn network, write down the equations that solve the problem.

Bill hates flies. There is a fly next to Bill. His scream startles the fly, which
takes off to the left immediately, traveling at one hundred and fifty feet
per minute. Bill freezes for one minute and runs to the right at one hundred
feet per minute. How long will it take Bill to be three hundred feet away
from the fly?

Problem 3. The following equations are intended to describe the word problem
below. The equations may have flaws, however. Correct any flaws by writing
directly on the equations. When done, copy over the resulting equations.
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D1 =400 x T1
D2 = 600 x T2
D1 = D2 + 1000
Tl =T2 -1

A huge ant terrorizes San Francisco. It travels east toward Denver, which
is twenty four hundred miles away, at four hundred miles per hour. The
Army learns of this and sends a helicopter from Denver an hour later to
intercept. It travels at six hundred miles per hour. If the ant left at two p.m.,
ignoring time changes, when will the ant and helicopter meet?

Posttest

Problem 1. Below you are given a word problem and a possible solution to it
in the form of a set of equations. The equations may be flawed, however. Please
correct the equations so that someone could use them to solve the problem as
given.

Arsenio and Ronald start in the same city. Ronald starts immediately and
travels west at forty five miles per hour. Arsenio leaves one hour later,
traveling east. If Arsenio drives at fifty miles per hour, how long will it
take him to be two hundred miles away from Ronald.

D1 =45 x Tl
D2 =50 x T2
Tl =T2 -1

D1 + D2 = 200

Problem 2. You are given a set of equations that describes a situation mathe-
matically. Write a short story that could be a word problem for the given equa-
tions. Use Linda as character 1 and Kathy as character 2. Keep it to 3 sentences
or less.

D1 =250 x T1
D2 = 100 x T2
Tl =T2 -1
D1 = D2

Problem 3. Write the appropriate equation or set of equations that can be used
to solve the following problems.
(You do NOT need to do algebra or solve for any values)
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Problem 3a. An ant and a fly start at the same time leaving from homes thirty
feet apart. They travel toward each other, the ant at four feet per hour and
the fly at seven feet per hour. If the insects both leave at 1 p.m., how long
will it take for them to meet?

Problem 3b. Bill leaves for a bike ride at 6 a.m. riding at sixteen miles per hour.
He breaks a wheel and has to walk back with his bike at four miles per hour.
If he arrives home eight hours later, assuming he took no rests or detours,
how far did Bill initially ride?
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