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Abstract 

Much problem solving and learning research in math and 
science has focused on formal representations.  Recently 
researchers have documented the use of unschooled 
strategies for solving daily problems -- informal strategies 
which can be as effective, and sometimes as sophisticated, 
as school-taught formalisms.  Our research focuses on how 
formal and informal strategies interact in the process of 
doing and learning mathematics.  We found that combining 
informal and formal strategies is more effective than single 
strategies.  We provide a theoretical account of this 
multiple strategy effect and have begun to formulate this 
theory in an ACT-R computer model.  We show why 
students may reach common impasses in the use of written 
algebra, and how subsequent or concurrent use of informal 
strategies leads to better problem-solving performance.  
Formal strategies facilitate computation because of their 
abstract and syntactic nature; however, abstraction can lead 
to nonsensical interpretations and conceptual errors.  
Reapplying the formal strategy will not repair such errors; 
switching to an informal one may.  We explain the multiple 
strategy effect as a complementary relationship between the 
computational efficiency of formal strategies and the sense-
making function of informal strategies. 

Introduction   
Much research on problem solving and learning in math 
and science has focused on the formal representations and 
procedures that are the stuff of traditional textbooks 
(Anderson, Greeno, Kline, & Neves, 1981; Larkin, 
McDermott, Simon, Simon, 1980). Our current 
understanding of how formal, algorithmic approaches 
operate is well grounded. However, people often rely on 
their implicit understanding of situations and the behavior 
of quantities in a situation to solve problems and answer 
questions. This understanding is a foundation on which a 
solver, on an unfamiliar or taxing problem, may formulate 
new problem-solving strategies. The documented use of 
unschooled strategies for solving daily problems suggests 
that these strategies can be as sophisticated and as 
effective as school-taught formalisms (Baranes et al., 
1989; Hall et al., 1989; Koedinger & Tabachneck, 1994; 

                                                           
  * The order of first two authors is arbitrary. 

Lave, 1984; Scribner, 1984; Stigler & Perry, 1989).  
While informal mathematics is often sufficient for 
everyday situations, formal mathematics, with its abstract 
and syntactic nature, provides real leverage in difficult 
situations which, though less frequent, are often the most 
consequential.  Formal mathematics is not flawless, 
however.  The abstraction process can lead to nonsensical 
interpretations and syntactic manipulation can be error 
prone.  Informal strategies can help here to make sense of 
problem situations.  Thus, rather than seeing formal and 
informal approaches as competing, our research has 
focused on how formal and informal strategies 
complement each other in the process of doing and 
learning mathematics. 

We provide preliminary results of a computer modeling 
effort directed at this issue. Informed by quantitative 
findings and analyses of verbal protocols, our developing 
model shows how solvers use their understanding of a 
problem situation to characterize it mathematically. We 
show why students can reach impasses with algebra, and 
how the use of informal strategies can lead to the better 
problem-solving performances of our experimental 
subjects. The emerging model of people's use of problem-
solving strategies shows solvers to be opportunistic and 
flexible. The weaknesses of one strategy are often 
compensated for by combining it with another to aid 
comprehension, facilitate its mathematization, or to 
support the computational solution.   

The Multiple Strategy Effect 
Koedinger and Tabachneck (1994) observed a high 
frequency of informal, non-algebra strategies (used in 
83% of all solution attempts) in college students' solutions 
of algebra word problems. The subjects, twelve Carnegie 
Mellon undergraduates, were simply asked to "solve these 
problems"; algebra was never mentioned. Subjects were 
trained to give a "think-aloud" concurrent verbal protocol 
(Ericsson and Simon, 1984) and were audio-taped.  

 
Example Problem: A man has 3 times as many quarters as he 
has dimes. The value of the quarters is one dollar and 30 cents 
more than the value of the dimes. 
Q1a: How many dimes does the man have? (answer: 2 dimes) 



Q1b. If the total value of the coins had been 2.55, how many 
coins would the man have had altogether? (answer: 12 coins) 

Strategy and Representation Identification 
We identified four different strategies in subject 

protocols which we call: algebra, guess-and-test, verbal-
math, and diagram (described below).  The four strategies 
make use of the following external representations listed 
roughly in order from more natural ones to more formal 
ones: 1) verbal propositions, 2) verbal arithmetic 
(arithmetic operations expressed verbally), 3) verbal 
algebra (equations expressed verbally), 4) diagrams, 5) 
written arithmetic (arithmetic operations expressed in 
traditional symbols), and 6) written algebra (equations 
expressed in traditional symbols).  As illustrated in Figure 
1, each strategy involves movement between 
representations, or translations, and manipulations within 
a representation, or transformations (cf. Lesh, Post, & 
Behr, 1987).  Some representations are associated with a 
specific strategy, for example, written algebra with the 
algebra strategy, while other representations are used in 
more than one strategy, for example, verbal arithmetic is 
used with guess-and-test and verbal-math. 
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1. Algebra (ALG): The most formal strategy employed by 
subjects. The verbal problem statement is translated to 
algebraic assignments and equations. The equations are 
transformed to find a solution (solve for the unknown). 
2. Guess-and-test (G&T): The verbal problem statement is 
translated into calculation recipes, represented either 
verbally or as written arithmetic (e.g., "he drove 5 miles 
more than he biked" is translated into "the miles driven is 
calculated by adding 5 to the miles biked"). A value for 
an unknown is guessed at and that value is propagated 
through the recipes.  If a computed value ever conflicts 
with a given value, then the guess is wrong and new 
guesses are made.  While we call this strategy "guess-and-
test", sometimes problem solvers leave off the test phase 
and use just the guess and propagation phases to develop 
a better understanding of the problem situation (cf., the 
model-based strategy in Hall et al., 1989). 

3. Verbal-math (VM):  The verbal problem statement is 
transformed into alternative verbal forms. There are two 
types of transformations: 1) verbal recodings intended to 
facilitate translation or 2) qualitative operations to 
estimate unknown values. Included in this strategy are 
translations to "verbal algebra" where equations are 
described verbally and transformations are performed that 
are analogous to written algebra transformations.1 
4. Diagrammatic (DG): The verbal problem statement is 
translated into a diagrammatic representation. 
Transformations are performed on the diagram, including 
annotations and diagram supported inferences.  

Multiple Strategy Use Correlates with Success 
The analyses yielded no reliable differences in 

performance as a function of strategy use. Of the 36 
solutions, informal strategies produced correct solutions 
65% of the time while the formally taught algebra 
strategy produced a correct solution 54% of the time — a 
difference which was not statistically significant. 
Additionally, solutions used one strategy or more than 
one strategy. Students were found to be more effective 
when they used multiple strategies in solving a problem 
than when they stuck with a single strategy. Of the 19 
solutions in which more than one strategy was used, 15 of 
them or 79% were correct. All 19 solutions involved at 
least one switch from a formal to an informal strategy (or 
vice versa). 13 of those involved ALG - VM switches. Of 
the 17 solutions involving a single strategy, 7 of them or 
41% were correct (X2(36,1) = 4.2, p = .02). In other 
words, multiple strategy use was about twice as effective 
as single strategy use. Koedinger and Tabachneck (1994) 
termed this advantage the Multiple Strategy Effect.  Other 
candidate features of successful performance (e.g., 
interactions with aptitude) did not distinguish problem 
solving success from failure. 
Impasses, sticking, or switching.  The protocols were 
classified into five stages relating to problem solving: 

1. Parsing and Understanding - reading or rereading of 
problem statement and question, and superficial transforms of 
the problem statements  
2. Solution Setup - setting up the problem solution (e.g., 
formulating an equation, drawing a diagram, making a guess). 
3. Solution  - carrying out the computations 
4. Solution Answer - finding the answer resulting from the 
previous computation 
5. Problem Answer - finding the answer to the problem 
question using the solution answer. 
Because these problems were challenging to these 

students, they rarely went through these steps in a single 
linear sequence. More often students were observed to 
make some progress through these stages, then return to a 
previous stage, almost always stage 1, and proceed 

                                                           
1Verbal algebra was performed by subjects in one 

condition of Mayer (1982) and is a generalizations of the "ratio" 
strategy identified by Hall, et. al. (1989). 



through the stages again (cf. progressive deepening in 
Newell & Simon, 1972). We used these return events to 
operationalize a notion of "getting stuck" or reaching an 
"impasse". Problem solving between impasses is an 
episode. Each episode was coded for the strategy subjects 
used in that episode. A strategy does not need to be used 
to completion in order to be coded as a strategy use. 

On some solutions attempts (38%) subjects did not 
reach an impasse, either because a correct solution was 
found without trouble or because an error went unnoticed 
(50% successes).  When solution attempts involved an 
impasse, sticking with the same strategy and trying it 
again always led to failure (0% successes), while 
switching strategies was far more likely to be successful 
(79% successes).  

Understanding the Multiple Strategy Effect  

Scope of the effect.  Multiple strategies will not be 
effective in routine or easy tasks, as problem solvers can 
apply a single special-purpose strategy with high success.  
It only makes sense to use multiple strategies in novel or 
complex domains where the chance of error is substantial 
(e.g., as in the 40% error rate in this study).  Further, in 
non-routine tasks, multiple strategies will only be more 
effective than a single strategy if errors made with the one 
strategy are not the same errors made with another 
strategy, that is, if multiple strategies are somewhat 
independent in their probability of being effective. This 
will happen only if they have features which complement 
each other. 
Differences in strategy features.  Although there are 
other features that distinguish these strategies, we present 
the following three features as a minimal set of features 
for illustrating their complementary strengths and 
weaknesses: 1) the difficulty of translation or in other 
words, the "distance" between the representation of the 
problem situation and the representation used for 
computing an answer, 2) the efficiency of computing 
within this representation, and 3) the working memory 
demands of computing within this representation.  See 
Figure 1 for the connection between the strategies and the 
representations in which computations are performed.  
Table 1 shows how the strategies rank on each of these 
features. 

Table 1: Strategy differences 
 DISTANCE 

FROM 
SITUATION 

COMPUTATIONAL 
EFFICIENCY 

WORKING 
MEMORY 
DEMANDS 

ALG far efficient low 
G&
T 

close inefficient low 

VM close efficient high 
DG medium varies low 

*ALG=Algebra, G&T=Guess-and-test, VM=Verbal-math, DG=Diagram 
 
As shown in the first column of Table 1, the algebra 

strategy has the advantage of easing the process of 
computing answers.  This is because the essence of 
complex problem situations can be abstracted into short 
strings that can be manipulated by well-defined rules.  
However, the process of translating problem situations 
into abstract strings is far from trivial.  In addition, the 
computations performed on these abstract strings are done 
without connection to the situational context and thus can 
lead to strings lacking meaningful situational 
interpretations.  These are both a consequence of the 
distance between the situation and algebra notation (see 
column 1 of Table 1). 

In contrast to algebra, the guess-and-test and verbal-
math strategies involve use of more familiar verbal and 
arithmetic representations that are closer to the situational 
context of the problem.  Thus, conceptual errors are less 
likely to occur and more likely to be repaired if they do 
(cf. Hall et al., 1989).  However, guess-and-test and 
verbal-math have their own weaknesses.  The numerous 
iterations of guessing that may be required in guess-and-
test make it computationally inefficient -- particularly for 
non-integer solutions.  Computation within the verbal-
math strategy is analogous to algebra and can be just as 
efficient.  However, unlike algebra where the symbolic 
strings are short and written down, verbal-algebra 
involves much longer strings which are not written down 
and must be maintained in working memory.    The 
difficulty of maintaining such strings means that this 
strategy is rarely used to find solutions to complex 
problems.  Like guess-and-test, this strategy is often used 
within multiple strategy solutions to aid comprehension 
but then is abandoned in favor of algebra for performing 
the computations.   

Like the algebraic strategy, comprehension within the 
diagram strategy consists of attempts to translate the 
problem statements into an alternative abstract 
representation. However, this representation results in a 
structure that maintains some of the semantics of the 
problem and thus is at an intermediate distance from the 
problem situation. For instance, in our example problem, 
one subject drew rows of bigger circles (quarters) and 
smaller circles (dimes). It is this semantic-preserving 
quality that makes it easy to understand. Translation and 
calculation demand little capacity since the structures are 
drawn on paper in sequential small steps. The 
computational efficiency varies: problems don't lend 
themselves equally well for diagramming, and it is not 
always easy to draw the diagram in such a way that the 
unknown is easily computable (or even visible). 

 A Cognitive Model 
Our modeling has focused on clarifying one of the ways 
that multiple strategies can be effective: the use of 
informal strategies for "sense-making" during problem 
solving.  We model how subjects' informal strategies 
operate and how the use of these strategies in concert with 
algebra circumvents impasses and leads to greater 



problem-solving performance than single strategy use.  
The current model provides an account of the following: 
• How conceptual errors occur -- these can be generated 

by shallow comprehension processes that may fail to 
distinguish between a quantity and an intensive 
measure of that quantity or may incorrectly infer logical 
structure from the syntactic structure. 

• How sense-making strategies can avoid errors. 
The model is written within the ACT-R theory which 

has a long history of success as a unified theory of 
cognition (Anderson, 1993).  

Modeling how Conceptual Errors Occur 
Because written algebra is the most abstract 
representation, it requires both the largest translation 
effort and the transformations done to compute answers 
are done with the least semantic support from the problem 
situation.  The latter fact is particularly relevant when 
shallow comprehension processes produce algebraic 
structures that do not make sense or conflict with the 
problem statement.  Because of the abstractness of 
algebra such conflicts go unrecognized.  For example, we 
observed in the protocols a frequent bug of this sort, the 
value-number bug.   
Protocol example.  The value-number bug is illustrated 
in the protocol in appendix 1a.  In lines 4-6, the student 
translates the problem statement "A man has 3 times as 
many quarters as he has dimes" into "number of dimes is 
equal to x, and the number of quarters is 3x".  Despite his 
verbal use of "number of dimes" (L5) and "value of 
dimes" (L10), this distinction is lost in the translation to 
algebra between lines 10 and 11.  Here, "The value of the 
quarters is one dollar and 30 cents more than the value of 
the dimes" is translated to "3x = x + 130". This 
formulation ignores the facts that dimes are 10 cents in 
value and quarters are 25 cents and thus, the correct 
equation should be "3*25x = 10x + 130".  By assigning 
3x to the number of quarters and x to the number of 
dimes, one strips the units and the associated meaning in 
going to the abstract representation.  This assignment 
strips both the "coinness" and the "quarter-and-dime-
ness" from the representation, and the cue "value" in the 
second sentence is simply not seen as relevant.  After 
abstracting to 130 from "one dollar and 30 cents", the left 
and right hand sides of the equation can be put together 
without ringing conceptual warning bells.  The 
computation of the resulting equation is carried out 
efficiently and results in a value of x = 65.  In line 15, the 
student states the unit of the result as 65 cents presumably 
because 130 is in cents.  In line 16, he appears to realize 
that 65 cents is an unlikely result for dimes (at this point 
having conceptually merged the notion of number and 
value of dimes).  The student's response to this impasse is 
stick with the algebra strategy and try it again, more 
carefully (not shown).  In two more attempts he makes the 
same error and finally gives up. 

Model description.  Our model of comprehension and 
translation involves production rules that look for known 
patterns in problem statements that can be translated to 
other representations like algebraic assignments and 
equations.  Terms or phrases encountered in earlier 
problem statements which refer to the same object or 
quantity must be properly mapped to the internal 
representation of that object or quantity.  In general, this 
mapping cannot be done verbatim because problems often 
use different terms or phrases of the same referent.  Also, 
in capturing the appropriate gist of a problem, specific 
features are often appropriately ignored such as "The 
man" in problem 1a.  However, this gist-oriented 
comprehension can sometimes go awry as illustrated by 
the value-number bug.  Below, we illustrate a production 
rule from our model, in pseudo-English form, that 
comprehends a noun phrase of the form "... <quantity-
term> ..." by mapping to the same working memory 
element (wme) that the use of "<quantity-term>" in a 
previous phrase was mapped to.   
 
Comprehend*noun-phrase*shallow-mapping 
IF goal is to comprehend the noun phrase "...<quantity-term>...", 
    and <quantity-term> was represented before as <quantity-
wme> 
THEN 
   represent "... <quantity-term> ..." as <quantity-wme>. 

In the case of problem 1a, this production inappropriately 
strips away relevant information as illustrated in this 
example application of the rule: 
 
    The goal is to comprehend "value of the quarters", 
    and "quarters" has already been represented as QUARTERS2 � 
THEREFORE 
    represent "value of the quarters" as QUARTERS 
 

The second column in Appendix 1a provides an 
abstracted trace of our model on problem 1a 
parameterized to perform only the algebra strategy.  Like 
the subject, the model ignores the number-value 
distinction.  It applies the comprehend*noun-
phrase*shallow-mapping production in cycles 7 and 8 
(for both dimes and quarters).  The consequence of this 
shallow-mapping is shown in cycles 11 and 12 where the 
model maps  QUARTERS and DIMES back to the algebraic 
representation defined in cycles 2-6.  In cycle 15, the 
model reaches an impasse as it recognizes that the result, 
0.65, does not make sense as a number of dimes. 
Modeling how Sense-Making Strategies Avoid Errors 
The value-number bug did not appear in either the guess-
and-test or verbal-math strategies in any of the protocols.  
Because these strategies remain in the verbal 
propositional representation, the meanings of quantities 
and their role in the problem (e.g., the number of dimes) 
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are maintained.  
Protocol example.  Like subject 3, subject 9 also started 
with algebra and made the value-number bug.  However, 
after recognizing that the answer she had found did not 
make sense, this subject switched to the guess-and-test 
strategy.  The first column of Appendix 1b picks up the 
protocol at this point.  After making a guess at the number 
of dimes being two (line 17), she immediately thinks of 
these dimes as totaling 20 cents (line 18) and thus avoids 
the value-number bug.  Using the constraint, identified 
earlier, that the quarters is 130 cents more than the dimes, 
she determines the value of quarters to be "a dollar 50" 
(line 19).  She repeats or rehearses this reasoning in lines 
20-22.  In line 23, she reasons that "a dollar 50" is 6 
quarters (doing an embedded guess-and-test).  Finally, she 
returns to the constraint in the first sentence of the 
problem to determine that if there were 2 dimes there 
should be 6 quarters.  This is consistent with the previous 
result, so the guess is accepted as the solution (which is 
correct).  
Model description.  As with the algebra strategy, we 
assume that subjects using the guess-and-test strategy 
may comprehend problem statements equally shallowly 
and initially be no more aware of the value-number 
distinction.  Thus, the comprehend*noun-phrase*shallow-
mapping production shown above is also applied here 
(cycle 28 in the model trace).  However, when subjects 
begin to guess values and propagate them through the 
problem constraints, the need to convert from number of 
coins to the value is supported by the situational context 
that is still active.  This is modeled with the following 
production: 
 
G&T*apply-addition-recipe*convert-input-unit 
IF the goal is to apply the arithmetic recipe: 
    <output-quantity> can be found by adding <known-quantity>  
       to <guessed-quantity>, 
    and <known-quantity> is known to be <value1> <unit1>, 
    and <guessed-quantity> is guessed to be <value2> <unit2>, 
    and <unit1> is not the same as <unit2>, 
    and one <unit2> is <convert-factor> <unit1>'s 
THEN 
 <value2> <guessed-quant> is <convert-factor>*<value2> 
<unit1> 
 

In trying to compute the quarters, this production 
recognizes that to add 2 dimes to 1.30 dollars, the dimes 
most first be converted to 0.20 dollars.  In this case, the 
production would be instantiated as follows: 
the goal is to apply the recipe: 
  quarters can be found by adding one dollar and 30 cents to the 
dimes,    
and one dollar and 30 cents is known to be 1.30 dollars,       
and dimes is guessed to be 2 dimes, 
and dollars is not the same as dimes, 
and one dime is 0.10 dollars, 
THEREFORE 
2 dimes is 0.20 dollars 
 

This is shown in cycle 30.  At cycle 31, the model 
finishes applying this recipe.  It then needs to convert the 
output of the recipe which is in dollars back to quarters 
(line 32) and finally check that applying the first recipe 
(quarters is 3 times dimes) yields the same result. 
Summary. Clearly, individual strategies have inherent 
weaknesses. Our model illustrates how switching 
representations can make problem solving more 
successful by compensating for these weaknesses.  Some 
unschooled strategies (e.g., VM and G&T) naturally 
support comprehension by retaining the problem 
semantics, thus avoiding common conceptual errors. In 
the multiple strategy example provided, the strategies 
were used non-interactively.  Other protocols show how 
strategies can be used interactively as results from an 
intermediate strategy feed back into the original one.  For 
example, subjects may start with the algebra strategy, run 
into an error, turn to another strategy to aid the 
comprehension and translation subtasks, and go back to 
algebra to solve the problem.  Multiple strategy use 
allows one to adapt to the local difficulties of a problem 
through selection of a strategy that is best for each 
subprocess. 

Conclusion 
Problem solvers regularly use unschooled strategies. 
Since integrating such common sense strategies and 
formal mathematics has met with instructional success 
(Carpenter & Fennema, 1992; Cobb et al., 1991), exactly 
how these strategies function and interact with previously 
learned problem-solving strategies is a matter of great 
interest to cognitive scientists and educators.  We showed 
through a computational model how multiple strategy use 
helps solvers to understand a problem and to compensate 
for the weaknesses of a given strategy and their own 
limitations in executing it. Our ACT-R model is intended 
to capture the cognitive processes involved in selecting, 
performing, and integrating multiple strategy use in 
algebra problem solving.  The emphasis here is not on the 
identification of strategic alternatives to algebra (though 
the VM strategy for verbal algebra is somewhat novel) -- 
others have identified similar strategies (e.g., Baranes et 
al, 1989; Hall et al., 1989).   

The emphasis is on understanding how these strategies 
are used interactively, one strategy providing a sense-
making function when another failed.  To understand this 
compensatory interaction, we have identified dimensions 
of strengths and weaknesses of these strategies: 
representational format, familiarity, computational 
efficiency, and capacity demands.  A major focus is to 
understand, through modeling, the specific circumstances 
under which each strategy is effective both as a basic 
research goal and for pedagogical purposes.  Further work 
will identify issues in strategy development intended to 
provide a theoretical explanation of how more familiar 
student-developed representations and strategies (e.g., 



guess-and-check, verbal algebra) can be used as ramp in 
the acquisition of unfamiliar formal representations and 
strategies (written algebra) (Kaput, 1989). 

Formal strategies facilitate computation because of their 
abstract and syntactic nature, however, the abstraction 
process can lead to nonsensical interpretations and 
syntactic errors.  The remedy to preventing or repairing 
such errors is not more careful reapplication of the formal 
strategy, rather problem solvers are better off switching to 
an informal strategy to make sense of the problem 
situation or to identify conceptually inconsistent slips.  
We explained the multiple strategy effect in terms of the 
complementary relationship between the computational 
efficiency of formal strategies and the sense-making 
function of informal strategies.   Effective problem 
solving in novel situations results from opportunistic and 
flexible application of both formal and informal 
strategies. 
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APPENDIX 1: DATA-MODEL MATCH  

1a 
line: 

Verbal report, Subject 3, Problem 1a  
cycle: 

Model output of buggy algebra version, Problem 
1a 

1-3  [Reads problem statement] 1  Ah, an algebra problem.  
4-6  
 

So, we’re going to say dimes are equal to x ... 
number of dimes is equal to x 
and the number of quarters is 3x 

2-6 X = DIMES        
3X = QUARTERS  

7- 9 [repeats 3-6]  [Reading 'value-of DIMES' as 'DIMES' and 'value-of 
QUARTERS' as 'QUARTERS'] 

10  and the value of the quarters is one dollar and 30 cents 
more than the value of the dimes 

7-9  QUARTERS is DIMES plus ONE-DOLLAR-AND-30-
CENTS.  

  10  They want to know the number of DIMES.  
11  so, 3x = x + 130 11-12 3X = X + 1.30 
12  so then I subtract x from the one side,    
13  I get 2x=130   
14  x= 2/130 which is ... uh    



15  6 ... 65 cents,  13-14 X = 0.65  
16  which does not make sense. 15  Solution value 0.65 does not make sense. DIMES should 

be an integer 
17- 33 [Repeats algebra and error twice more]  [Note:  Like the subject, the model will  
34  I get x = 65.  continue to retry algebra and make the same  
35  So I have a value ... it’s not making sense, though.  error.] 

 
1b 
line: 

Verbal report, Subject 9, Problem 1a  
cycle: 

Model output of buggy-algebra + guess-and-test 
version, Problem 1a 

1-14 [Buggy algebra translation.  Similar to 1a above.] 1-16  [Buggy algebra translation.  Same as 1a above.] 
15-16 [Rereads problem indicating impasse and switches to 

the Guess-and-test strategy] 
17-18  I'm going to try the guess-and-test method.  

                                                                                                 19-28  [Recomprehending problem sentences.] QUARTERS is 
DIMES plus ONE-DOLLAR-AND-30-CENTS.  

17 right ... so if he had ... if he had 2 dimes,  29  Guessing value for DIMES is 2.   
18 that would be 20 cents, 30  2 DIMES would be 0.2 DOLLARS  
19 and if he had a dollar 50 in quarters,  31 Because DIMES-IN-DOLLARS is 0.2 DOLLARS and 

ONE-DOLLAR-AND-30-CENTS is 1.3 DOLLARS, 
QUARTERS-IN-DOLLARS is 1.5 DOLLARS.   

20-21 how many would that be?  That would be ... well, if he 
had two dimes, that would be 20 cents. 

  [Repeat of cycles 29-30] 

22 and then, 20 + 130 would be 150.  [Repeat of cycle 31] 
23 and that would be ... how many quarters would that be? 

... that would be 4, 5, 6 ... that would be 6 quarters 
32 1.5 DOLLARS would be 6.0 QUARTERS 

24 2 times 3 is 6 ... oh, ok.  Easy. 33-35  Because DIMES is 2 and 3 is 3, QUARTERS is 6.0.  
That's right!  That's what I got before.  

25 Uh ... the man has 2 dimes. 36 The problem was asking for DIMES.  
DIMES was found to be 2.  

 


