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Inquiry into interactive learning environ-
ments (ILEs) such as computer-based instruc-

tional systems, is necessarily rooted in both the
nature of learning environment system design
and the study of learning and problem-solving.
This article addresses both facets in an effort to

explore the role that theories of learning and

competence play in the design of a system for
training students to reason about mathematical
story problems. Many successful computer-
based tutoring environments are based on theo-
ries of cognitive skill acquisition and
assimilation of expert knowledge. ANIMATE, an
ILE for mathematical story problem solving, is
cast from a different theoretical framework
which highlights the role that comprehension-
based processes play in problem solving within
knowledge-rich domains, while underplaying
the role of technologically intensive student
modeling and knowledge-based feedback. Per-
formance with it is compared to a variant that
provides knowledge-based feedback in a learn-
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ing experiment. The nature of the performance
differences elicited by the two systems brings up
basic issues of the role that learning theories
play in the design of learning environments.

THE IMPACT OF THEORIES OF
LEARNING ON LEARNING
ENVIRONMENT DESIGN

Inquiry into interactive learning environ-
ments (ILEs) such as computer-based instruc-
tional systems, is necessarily rooted in both the
study of learning and problem-solving and the
nature of learning environment system design.
This article addresses both facets in an effort to
explore the role that theories of learning and
competence play in the design of a system for
training students to reason about mathematical
story problems. _

The issues surrounding design choices of
learning environments are complex and not
easily addressed. But from where does the de-
signer obtain the design, or the principles which
can guide, suggest, and constrain it? Psychologi-
cal theories of learning and competence in a
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domain are seemingly natural sources of princi-
ples for the ILE designer, and the benefits often
listed are manifold. First, theories of learning
help to point the way toward effective designs
In an instructional design space that is ex-
tremely large and difficult to formalize (cf.
Miller, 1982). In such a large space it just is not
likely that designers will “stumble” onto the set
of optimal design characteristics without con-
straints to aid that search. Psychological theo-
ries of learning and competence play a heuristic
role in the generation of instructional principles
and ILE designs. Second, when the design proc-
ess is tied directly to a theory of competence,
the principles employed in the system are seen
as drawn from a larger theoretical picture of the
workings of the mind and the complexity of the
domain (Anderson, 1993). Third, design princi-
ples rooted in a theory have the promise of
being internally consistent. Finally, there is the
added reliability expected from systems based
on principles that have been tested empirically
(Polson & Richardson, 1988). Following this
rationale, there have been repeated calls by
leaders in the field of CAI and cognitive psychol-
ogy for ILE designs to be rooted in some theory
of learning and competence in a domain (Ander-
son, 1989b; Cummings, 1990; LeBlanc, 1993;
Koedinger & Anderson, 1990; Nathan, Johl,
Kintsch & Lewis, 1989; Ohlsson, 1986; Yazdani,
1989). This is in contrast to an early {(and
continued!) tendency to base ILE designs pri-
marily on intuitions of how learning proceeds in
a field, or on novel uses of the available technol-
ogy (Regian & Shute, 1992).

TWO VIEWS OF LEARNING
ENVIRONMENT DESIGN

Intelligent Tutoring Systems (ITSs)

Some of the most theoretically weli-founded
tutoring system design efforts have been used
to develop Intelligent Tutoring Systems (ITSs).
These are systems that tutor novices in a par-
ticular domain of study by using expert problem-
solving knowledge as a means to classify a
learner’s response and provide feedback. Error
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detection (and in some cases correction) is
typically performed by the tutoring environ-
ment as the chief means of instruction. In the
best of situations. stored expert knowledge is
augmented with common student misconcep-
tions in the domain to facilitate error diagnosis.
Many systems use the interactions of the system
with the learner to infer deficiencies in the
student’s knowledge base. They build from this
a student model which is used to adapt instruc-
tion to the student’s individual needs.

The most fruitful and welltested of these
tutoring systems have come from Carnegie Mel-
lon’s Advanced Computer Tutoring Project -
(ACTP) program, headed by John Anderson.
Central to the designs of the ACTP tutors for
LISP, geometry and algebra is the notion that
the problem-solving knowledge possessed by
domain experts (and ultimately to be acquired
by the learner) can be naturally represented by
the rules of a production system. Learning is
characterized by the acquisition of the expert’s
production rules, or the replacement of the
novice’s buggy rules with those of experts.
Analyses have shown clearly that the learning
that emerges from using the CMU LISP Tutor,
for example, can be modeled most effectively
by the acquisition of the specific production
rules that underlie particular skills in LISP
programming, and that the knowledge ele-
ments represented by production rules are
learned independently of one another (Ander-
son, 1989a; Pirolli, 1991).

Many of the basic instructional principles
which shape the designs of the ITSs developed
by Anderson and his colleagues have direct
roots in Anderson’s ACT* theory of cognitive
skill acquisition (Anderson 1983, 1987; Ander-
son et al., 1984). For example, the prediction of
the ACT* theory that excessive working mem-
ory load causes learners to lose goals leads to
the instructional principle to minimize the
working memory load placed on the learner by
providing partial products, and (visually) mak-
ing the goal structure available to the learner
(also see Glaser and Bassok, 1984).
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Challenges to the ITS Approach

Intelligent tutoring systems rely on the ability
of the developers to construct a model of com-
petent problem-solving performance in a do-
main and to project onto this model the
behavior of a learner. It has been argued that
ITS technologies based on student modeling
may be fundamentally limited because of a num-
ber of reasons. While the success of some ITSs
has been well-established (e.g., Anderson, 1993;

Lesgold, Ivill-Friel, & Bonar, 1989), several

issues have been raised which bring into ques-
tion the generality of systems designed for
knowledge-based feedback in open domains
(e'.g‘, Koegel, Lakshmipathy, & Schlesinger,
1989; Nathan, Kintsch, & Young, 1992). For
example, expert modules, as with -expert sys-
tems, can only be constructed for domains
where expertise exists and is codifiable (Water-
man, 1986). Another concern that has been
levied is for the appropriateness for performing
student modeling at all. As noted in Derry and
LaJoie (1993, p. 3), student modeling necessar-
ily limits the student “ . . to follow solution
paths that the machine can recognize.” It also
may rob the student of the need to perform the
diagnostic task—an aspect of problem-solving
which appears to be basic to competency in a
variety of domains as diverse as mathematics,
text editing, and writing (Nathan, 1991). Rele-
gating diagnosis to the tutoring environment
may implicitly teach students that evaluation
and reflection upon a solution is not considered
relevant to the problem-solving process. This is
particularly bothersome since many students
already perceive problem solving as an immedi-
ate, single-step process, rather than the deliber-
ate and reflective process described by cognitive
scientists and educational reformers, and exhib-
ited by practitioners.

There is also empirical evidence that the
“Intelligence” centered design of ITS systems is
not the only vehicle for the learning gains
enjoyed by some ITS users. In one classroom
assessment of the CMU geometry tutor, for
example, much of the learning was ascribed to
social factors which extend well beyond the
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scope of the ACT* learning theory upon which
the tutor design is based. Schofield, Evans-
Rhodes and Huber (1990) noted that one of the
major factors that improved subjects’ perform-
ance was an increase in students’ efforts based
on the peer-competitive atmosphere that
emerged around the tutor. The ACT* theory
attributes learning to prove geometry theorems
to changes that occur to individual students’
mental representations of geometry knowledge
at the level of production rules (Anderson,
Boyle, & Yost, 1985; Koedinger & Anderson,
1993). This includes changes in students’ decla-
rative and procedural knowledge that are spe-
cific to geometry theorem-proving: analyzing
diagrams, planning a proof, setting subgoals,
accessing and applying relevant theorems and
postulates, learning through the analogy to
prior examples, and so on. These changes, in
turn, come about through the direct acquisition
of rules and rule composition, changes to the
activation of rules, and manipulations of the
goal structure (Anderson, 1993). Social changes
such as those at the community level, and shifts
in students’ competitiveness may ultimately im-
pact an individual’s learning processes through
underlying mechanisms posited by the (now)
ACT-R theory. But the theory itself, through its
set of instructional principles (e.g., Anderson et
al, 1984), is silent about these social factors.
Student modeling and the expert-like feed-
back that ITSs attempt to provide are intended
to bring about the large gains brought about by
human tutoring (Bloom, 1984). Recent analyses
of human tutoring discourse, however, suggest
that these instructors make little use of such a
dynamically evolving student model {Fox, 1993;
Craesser, 1993; Lepper et al, 1993). Approxi-
mately 70% of the speech acts from the human
tutor in Graesser’s corpus were found to be
guided by predetermined curriculum scripts,
while “only 8% of the tutorial interaction was
devoted to the correction of student bugs and
misconceptions” (Graesser, 1993, p. 127). Be-
havior guided by preconceived examples and
questions are far more characteristic of. the
human tutoring experience that yields the large
learning gains noted by Bloom (1984) than are
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the ITS interactions customized to address each
student’s specific question, error, and miscon-
ception.

Unintelligent Tutoring Systems
(UnITSs)

An alternative view of cognitively based in-
structional technology has been offered that
shifts away from the centrality of knowledge-
based feedback in error diagnosis and relies

instead on the learner as the diagnostician. The -

LOGO programming environment is the pre-
miere case (Harel, 1990; Papert, 1980). How-
ever, several other investigators have developed
learning environments which present alterna-
tives to student modeling (e.g., diSessa, 1985:
Roschelle, 1987; Self, 1988). The essential prop-
erty is that the system is able to reflect back to
the learner observable and meaningful ramifica-
tions of the learner’s actions in such a way that
the learner can use her prior knowledge to
identify solution errors, re-examine prior con-
ceptions, and propose and test hypotheses
about the causes of errors (Nathan, 1991).! The
learner then corrects the error, perhaps over
multiple iterations, and thereby verifies her
understanding of the new material and its rela-
tion to her prior knowledge.

A computer-based learning environment, ANI-
MATE, has been developed which promotes
learning in this way. It is designed to enhance
learners’ mathematical story problem-solving
performance by supporting their problem com-
prehension processes (Nathan et al., 1992). ANI-
: MATE is cast from a theoretical framework
which highlights the role that comprehension-
based processes play in problem solving within
knowledge-rich domains, while underplaying
the role of technologically intensive student
modeling. It does so through a technologically
modest design which has been termed “unintel-
ligent” because it supports learning without
student modeling or knowledge-based feedback
(Derry & Lajoie, 1993; Kintsch, 1991; Nathan
et al,, 1989). In place of tailored, knowledge-
based feedback from the tutor’s expert module,
the unintelligent tutoring system uses state-
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based feedback which engages the student’s
own knowledge so that the student may provide
self-assessment and error correction.? Specifi-
cally, students construct algebraic equations
which drive an animation of the story problem
situation (e.g.,, workers painting a fence at dif-
ferent rates). Because of the direct causal link
between the animation and the formal expres-
sions of the algebraic solution, unexpected be-
haviors in the animation—actions that are
inconsistent with the student’s model of the
story situation—suggest errors in the mathemat-
ics of the proposed solution, the nature of which
is highly constrained by the type of misbehavior.
Students debug their solutions and test them
until an acceptable story situation is depicted.

"By explicitly connecting the mathematics to the

situation, the theory hypothesizes, students will
learn how to interpret the mathematical formal-
isms they construct and manipulate.

Design of an ILE for Mathematical
Story Problem Solving

Experimental results with this learning envi-
ronment have been promising: ANIMATE users
show significantly higher posttest scores than
do users of a variety of control learning environ-
ments (Nathan et al., 1992). The design of the
ANIMATE system is based on a theory of mathe-
matics story problem solving that accounts for
several aspects of problem-solving difficulty and
differences between high and low competency
solvers.

The core theory: problem
comprehension. The theory draws di-
rectly on constructs from the reading compre-
hension framework of Kintsch and van Dijk
(Kintsch, 1988, 1991; van Dijk & Kintsch, 1983)
as well as earlier work on the comprehension
processes and problem-solving difficulties that
students experience when solving mathematics
story problems (Carpenter et al., 1980; Cum-
mins et al., 1988; De Corte & Vershaffel, 1980;
Kintsch & Greeno, 1985; Reusser, 1985).

In their theoretical analysis of story problem
comprehension, Nathan and colleagues (1992)
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showed that reading for certain tasks such as
problem solving made use of multiple mental
models in order to represent all of the critical
aspects of the problem situation. The reader, for
example, must necessarily elaborate on the
given text, draw inferences, and so on, to pro-
duce a more complete account of the intended
situation (e.g., Bransford, Barclay, & Franks,
1972; Fletcher & Chrysler, 1990; Schmalhofer
& Glavanov, 1986; Weaver & Kintsch, 1987).
This representation, which draws on the
reader’s prior knowledge of events and semantic
knowledge as a source for the elaboration has
been termed the sifuation model (van Dijk &
Kintsch, 1983; Kintsch, 1988). A model which
represents the mathematical relations among
the quantities of the story, including those that
were not explicitly mentioned, captured quite
another aspect of the situation. This latter rep-
resentation has been termed the problem model
since it represents the mathematical structures
needed to solve the problem.? (Kintsch, 1991;
Kintsch & Greeno, 1985; Mertz, 1993; Reusser,
1990, 1993).

Problem solving can occur using exclusively
the situation model or the problem model. For
example, many beginning mathematics students
and those unschooled in formal methods often
think of a problem purely in situational terms
(e.g., Baranes, Perry, & Stigler, 1989; Carraher,
Carraher & Schliemann, 1987; Rogoff & Lave,
1984). Conversely, researchers have found stu-
dents representing story problems in formal
problem model terms to the near exclusion of
the situation to which the equations and values
refer (cf. the tactical solution approach of naive
physics problem solvers in Larkin, 1983, 1985).
Students using this approach often disregard
the meaning associated with the equations of
the values and thus may provide solutions
which are physically or situationally implausible
(e.g. Hinsley, Hayes, & Simon, 1977, Paige &
Simon (1966); Silver, 1988). Even experienced
problem solvers may rely on problem-solving
approaches that rely exclusively on situation
model or problem model based solution ap-
proaches (e.g., Hall et al, 1989; Tabachneck,
Koedinger, & Nathan, 1994).
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In contrast, observations of highly competent
problem solvers show the power of using the
situation model and the problem model in an
integrated fashion. The coordinated use of a
situation -model with one’s formal problem
model appears to be fundamental to problem
solving with understanding in a variety of do-
mains. Pennington (1987), for example,
showed a similar pattern among professional
programmers. She observed that overall, low-
comprehenders tended to think about computer
programs either in terms of the referent situ-
ation or in formal, programming terms (e.g, the
datastructures and algorithms), but they rarely
did they make connections between the two .
views. Similar patterns can be seen among stu-
dents in physics, writing, and geometric theo-
rem proving (Koedinger & Anderson, 1990;
Larkin & Reif, 1983; Scardamalia, Bereiter, &
Steinbach, 1984).

Comprehension-based problem solving.
Why be concerned with comprehension proc-
esses during problem-solving? First, comprehen-
sion failures have been shown to be a major
source of poor problem-solving performance.
Second, instructional interventions aimed at
supporting the problem solver’s comprehension
processes have been empirically shown to en-
hance problem-solving performance.

Cummins and her colleagues (1988) showed
that the solution performance of first-graders
was associated with their ability to comprehend
the original problem statements. Nathan & Res-
nick (1993) showed empirically that “failure to
make and algebraically specify necessary story
inferences contributes greatly to [students’]
poor problem-solving performance.” {p. 120).
Approximately 60% of all errors were attribut-
able to failures of students’ inference-making
processes because the story problems were
poorly or incompletely comprehended. This in-
dicates the importance played by learners’ prior
knowledge of the world, and need for support
in this area.

When comprehension problems arise, good
learners and problem solvers try to make sense
of the task. Tabachneck, Koedinger and Nathan
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{1994) found in their analysis of the verbal
protocols of story problem solvers how the need
to comprehend a story problem mediates strat-
egy changes during story problem solving. A
coordinated use of unschooled strategies which
enhance comprehension of the problem. and
calculation-intensive schooled strategies such
as algebra effectively doubled students' per-
formance. Several studies have shown that
those who learned the most tended to produce
explanations which tied the new material to
their prior knowledge (Bielaczyc & Pirolli, in
press; Pirolli & Bielaczyc, 1989; Chi et al., 1989,
in press).

In order to test the hypothesis that instruc-
tional support for one’s comprehension proc
esses enhances problem-solving performance,
Nathan and colleagues (1992) developed ANI-
MATE. The learning environment aimed at im-
proving subjects’ awareness and skill at
integrating their mathematical knowledge with
their knowledge of the situation of the story
problem (Nathan, 1991; Nathan et al., 1992).

Previous Results with ANIMATE

In an earlier empirical evaluation of the ANI-
MATE learning environment (Nathan, 1991;
Nathan et al., 1992), subjects were pre-tested for
their ability to solve mathematics story prob-
lems from the latter stages of the Algebra I
curriculum (e.g., Foerster, 1984). All of the
problems involved constructing systems of in-
terrelated linear equations to determine values
for intensive quantities (cf. Kaput, 1985).

Subjects were assigned randomly to one of
five treatments, summarized in Table 1. ANI-
MATE users were able to set up a simple depic-
tion of the situation for a problem on the
computer screen, such as Problem 1 below.

In a race to save the passenger train from possible
destruction, a helicopter was sent out to warn the
engineer of a bridge and radio tower that had been
washed out only hours before. The train left Central
City two hours before the helicopter operator had
been notified of the incident. With the train traveling
at an average speed of seventy-five miles per hour,
the helicopter operator was ordered to fly at full
speed—nearly three hundred miles per hour! If the
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train is 60 miles from the broken bridge. can the
helicopter notify the engineer in thme?

The animation served as an exlernalization of
the situation model hypothesized to be con-
structed by the solver reading the problem
(Kintsch, 1988, 1991). Additionally, the solver
was encouraged to construct an interconnected
set of algebraic equations intended to capture
the quantitative relations of the problem. This
served as an externalization of the problem
model—the representation of the problem situ-
ation in terms of the solver’s formal mathemati-
cal knowledge. The animation could be run at
anytime during the problem-solving process, but
it would behave only in the manner specified by
the formal relations of the problem model. Mis-
matches that subjects perceived between the
animation and the expected behavior of the
characters (as determined by subjects’ situation
models) reflected errors in the formal specifica-
tion of the solution (the formal problem model),
and could only be resolved through changes in
the mathematical equations.

For example, consider the attempt to solve
Problem 1 above using the network of algebraic
equations shown in the right-hand corner of
figure 1 and animation as feedback. The move-
ment of the helicopter in the upper window part
of the screen incorrectly precedes the movement
of the train, as is clear from a careful reading of
the story problem. This action is governed,
however, not by the story, but by the mathemat-
ics provided by the learner in the righthand
window. The learner builds a network of values
and operators. In previous studies (Nathan et
al, 1992; Weaver & Kintsch. 1992) students
have been shown to translate from this network
representation to a conventional set of algebra
equations with ease.

The learner then enters particular values in
order to instantiate the events and values of a
particular story problem. As is typical of many
learners that have been observed, the phrase
“the helicopter leaves two hours after the train”
has been interpreted as the mathematical ex-
pression T1 {for the train) equals T2 (for the
helicopter) minus 2 (Figure 1). This misunder-
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Table 1. Treatment differences and the associated performance improvement

Network Link Situation Set Up and Run
Training Groups Algebra Review  Formalism to Network Animation 2722
ANIMATE . . . . +50
No Running . . . +24
Network-Only . . +30
Situation-Only . . +1
Control {no tutor) .

» < .05

standing of marked terms in story problems has
been well-documented by A. Lewis (1989 Lewis
& Mayer, 1987). Graphically this is constructed

Situationally, however, the travel times of the
train (T1) and the helicopter (T2) are mathemati-
cally related by the expression,

550 500 450 400 350 300

Despite the negative relation as conveyed by the
cover story, in order to faithfully represent the
situation as described by the problem, one must
add two (hours) to the travel time of the heli-
copter (T2) in order to equate the travel times
of the two vehicles (since the helicopter actually
will travel less time at the point that it overtakes
the train). ,

The presence of the -2 (minus two) in the
algebraic network causes the helicopter to com-
mence travel two hours before the train {con-
trary to the story), as depicted by the animation
and assoctated clock of Figure 1. It is now up to
the ANIMATE user to evaluate the animation

200 150 100 S0

| L L L L L A

e

Distance travelled by Train 0

T T T T T

Distance travelled by Copter 300

| Equations ‘

l Neus Pmblem'

l Pick Character § I
Quit :
’ Pick Character 2 I

Figure 1. The ANIMATE Screen During a Solution Attempt of an Overtake
Problem. The Learner is to Use the Animation (top pane) as a Source of
Feedback to Highlight Conceptual Errors in the
Solution Attempt (right-most pane).
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with regard to the intended situation and, if
necessary, to resolve any contradictions or ex-
pectation violations. Changing the equation to
T1=T2 + Zresultsin the train leaving two hours
before the helicopter, and thus providing an
animation consistent with the overtake situ-
ation described.

This form of directed user control serves to
explicitly link the external forms of the situation
model and the problem model in a causal man-
ner. In line with the theory, problem comprehen-
sion was facilitated to the extent that subjects
coordinated their internal, mental repre-
sentations of the situation model and the prob-
Jlem model. This internal coordination was
hypothesized to provide a situational interpre-
tation for mathematical structures, while sup-
porting the (situation model-mediated)
inference-making process needed to fully specify
a formal solution.

Subjects in the remaining treatments re-
ceived successively less support from their
learning environments in order to experimen-
tally control for the effects attributable to
practice, computer use, or use of the situ-
ation-based problem-solving method. Those in
the Stop-Condition treatment received an iden-
tical learning environment to the ANIMATE
system, except that they could not actually run
the animation. Subjects in the Situation-Only
treatment could set up and run the animation
of the problem situation, but were provided no
explicit link to the mathematics. Subjects in the
Network-Only treatment could set up the mathe-
matics but had no link to the animated depiction
of the problem situation. Finally, the control group
solved the problem using paper and pencil.

As the results of Table 1 indicate, subjects in
the ANIMATE condition showed the largest
improvement and the highest posttest scores.
Furthermore, an analysis of the problem-solving
process indicated that providing support for
subjects’ situation model construction helped
in their inference-making abilities during prob-
lem solving. Solution components were either
based on necessary inferences and elaborations,
or based on information present in the problem
statement. Students’ most frequent pretest so-
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Jution errors, 63%. were errors of omission and
commission for algebraic expressions based on
inferences. Although inference-based errors
were still the most numerous at posttest time,
ANIMATE users showed the largest decrease in
such errors, at the 1% level. Control subjects
who developed the computer animation which
was not driven by mathematical equations (i.e..
the Situation-Only group) showed the second
largest decrease in inference-based errors, fur-
ther reinforcing the importance of situation
model development on once inference-making
and reasoning performance.

The Theory of Unintelligent Tutoring

Unintelligent tutoring system (UnlTS) design,
as it has come to be called, appears to some to
exist primarily as a reaction to ITS research and
development (e.g., Lajoie & Derry, 1993). The
term “Unintelligent tutoring” certainly suggests
this; but the label is, in actuality, something of
a misnomer. Most systems which fall under this
category (Nathan et al, 1992; Papert, 1980;
Reusser, 1993) are not accurately portrayed if
considered to be totally devoid of intelligence,
since they utilize “offline” knowledge supplied
by the system developer (c¢f. Koschmann, 1994).
This can take the form of checks on the syntac-
tic structure of a user’s input based on stored
knowledge, often in the form of rules. Even
more substantive aspects of a user’s entries may
be viewed through a knowledge filter within the
system. These systems also rely on knowledge
provided by the user “on-line” to determine their
behavior.

Furthermore, the approach of unintelligent
tutoring is undermined if it is considered to be
chiefly as a system lacking expert knowledge.
The approach is, rather, a philosophy of cogni-
tively based educational technology and tutor
design that focuses on ways to elicit knowledge
from the user during problem-solving and in-
structional activities. With this approach comes
a set of basic properties for such a system and
principles for the instruction and learning that
emerge. These properties are articulated later
in this section.
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In contrast to the ITS approach, unintelligent
tutors such as ANIMATE cannot assess the
student’s performance because they typically
possess no expert module or student model and,
in fact, have no knowledge of the correct an-
swer, or even of the problem being solved.
Instead, unintelligent tutors provide situation-
based feedback which the student must inter-
pret. The interpretation process forces the
student to integrate mathematical and situ-
ation-based knowledge by making predictions
and comparing the computer animation to ex-
pectations drawn from the text. When the ani-
mation deviates from the expected behavior, the
student must look to the mathematics which
drives it and decide how to modify the equations
to produce the intended animation. A corre-
spondence between the situation and compo-
nents of the solution are formed by the
learner—thus creating situation-based meaning
for the equations which, empirical results to
date suggest, enhance students’ mathematical
reasoning about algebra story problems.

Within the UnlITS approach, the intention
is, as with the ITS approach, to bring about
procedural, declarative, and metacognitive
learning; and this is done, as with ITSs, through
a knowledge-rich interaction between the tutor
and the learner. Unlike the typical ITS ap-
proach, the intelligence used for knowledge
assessment is provided chiefly by the learner.
Rather than trying to “understand” the learner,
the UnITS reflects the learner’s own perform-
ance back in a meaningful way. The aim here is
to encourage learners to be self-evaluative and
reflective, to assess their own problem-solving
performance, and to detect and correct their
errors. The claim here is that it is not necessary
that the tutor understands the learner. This is
merely a means to an end. The central goal is
for the learner to achieve greater understanding
of the problem-solving process and the underly-
ing principles of the domain through knowledge
elicitation, knowledge integration, and reflec-
tion. Consequently, the emphasis in UniITS de-
velopment is on a thorough analysis of the task
domain (cf. Reusser, 1993) and on the user
interface which provides interpretable feed-
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back, rather than on knowledge engineering
and expert module development which directs
knowledge-based feedback.

The approach used by ANIMATE also makes
an important aspect of the problem-solving proc-
ess overt: Reflecting on a solution is vital to
robust problem solving (cf. Schoenfeld 1989).
Making errors is part of complex skill develop-
ment. Presenting a solution attempt in a form
that is meaningful to the student engages solu-
tion assessment and correction (i.e., debugging)
skills. All of these aspects of unintelligent tutor-
ing have suggested a set of principles which
govern their design and use.

Principles of Unintelligent Tutoring
System Design:

Achieve a correspondence befween a
known situation and the to-be-learned mate-
rial. The goal is for a correspondence to be
achieved between the situation within which a
task is embedded and the components of the
solution process. This creates a meaningful in-
terpretation of the material which must ulti-
mately be learned to support the solution
process. ANIMATE achieves this by grounding
the interpretation of the algebraic notation to a
running animation depicting the situation im-
plied by the cover story of a problem. The
situation is known to the student and the stu-
dent can apply her knowledge of the situation
to reason about the constraints and outcomes.
As noted, behaviors in the animation, expected
or not, tie directly back to the specific mathe-
matics constructed by the student. The behavior
of the animation can only be changed by making
adjustments to algebraic terms and operators.
In this way, the mathematical notation takes on
a situation-based meaning which supports
learning and comprehension as well as novel
reasoning activities. ’

Elicit the user’s knowledge.
Knowledge-based feedback is an effective way to
foster content learning (e.g., Anderson, 1993).
But it ts based fundamentally on a model of
knowledge (or cognitive skill} refinement,
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rather than knowledge elicitation and knowl-
edge building. Working with an UnITS is in-
tended to be an interaction which puts the
student’s knowledge to the forefront. The goal
is for the student to use the knowledge she feels
is relevant, observe the application of that
knowledge, notice its relevance, and reflect on
the process by which this particular knowledge
came to be selected and applied.”® When that
knowledge is elicited from the user rather than
from some unfamiliar source, this process can
additionally foster higher-order thinking—meta-
cognitive skills such as comprehension monitor-
ing (Chi et al., 1989) and internal learner control
(Lin, 1993). Results with the ANIMATE system
also indicate a greater likelihood of making the
inferences needed to fully and correctly specify

solutions for many story problems (Nathan & -

Resnick, 1993).

Make a causal link between the
student-entered solution representation
and a student-meaningful representation.
The effective presentation of multiple external
representations for a phenomenon is a tricky
task. In principle, we are providing the learner
with a wonderful opportunity: To see several
perspectives (often in the abstract sense of the
word) of a phenomenon or concept in order to
enhance its understanding (e.g., Comfrey, 1991;
Courey & Pietras, 1989). When multiple repre-
sentations are used to provide an understanding
of the behavior of a phenomenon or formal
system, there is a danger, however, that the user

will have his attention misdirected, fail to see

the relevance of these different representations,
or fail to see how they correspond.® Conse-
quently, these representations must clearly be
linked to the intended material (see LeBlanc,
1993). The focus on establishing a single, uni-di-
rectional causal link from the solution repre-
sentation (i.e,, the algebraic formalism) and a
situational depiction of that representation al-
lows the system to reflect back a meaningful
interpretation to the student. This is why there
needs to be such a large emphasis on the inter-
face design and user-testing of these systems
(Nathan, 1990).
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While the incorporation of this principle does
not distinguish UniITS from some ITS designs,
the relative importance it enjoys in the different
approaches does. In ANIMATE, for example,
representations for the mathematics and the
situation are causally related. It is paramount to
the learning experience that what one presents
in the mathematical representation drives what
will occur in the situation-based representation.
In this way, attention of the learner is clearly
directed toward planning activities early on, as
one constructs an initial skeleton of the solu-
tion, and diagnosis as one checks the accuracy
of the mathematics with one’s situation model.

Error-making in a meaningful context
provides learning opportunities. Stu-
dents’ difficulties for retrieving knowledge rele-
vant to task performance are well known (e.g.,
Bereiter, 1984; Bransford, Franks, Vye, & Sher-.
wood, 1989; Phye, 1992). However, when the
subject is operating within a meaningful con-
text, access to prior knowledge is facilitated and
enables one to diagnose and correct errors.
Children show enhanced mathematical problem-
solving behaviors when the problems are
couched in familiar money terms, for example
(Baranes et al., 1989). Problem-solving activities
in mathematics and science are also enhanced
when they are “anchored” to rich stories that
engage students (Bransford, et al.,, 1989; Sher-
wood et al.,, 1987).

Educational programs which help students
perform their own causal reasoning for diagno-
sis by exploiting their small but powerful set of
causal reasoning heuristics (e.g., Lewis, 1986)
allow the student to take charge of the learning
process and provide the tutoring system de-
signer with a helpful ally in error diagnosis.

Support for error detection and
recovery is central to developing
competence in a domain. Critical to the
learning process is the role of the student’s
knowledge in evaluating each solution attempt.
While addressing the credit assignment problem
(e.g., Samuel, 1963) is a notoriously difficult
problem for Al systems, humans, drawing on
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their vast prior knowledge of situations, can
exploit the associations they form between er-
roneous behaviors in the referent situation and
its cause in the formal domain. Performance
assessment and error recovery are crucial skills
when teaching any domain.

Observations of expert performance in a vari-
ety of areas such as physics (Larkin & Reif,
1983), mathematics (Allwood & Montgomery,
1981, 1982; Lewis, 1981), writing (Scardamalia,
Bereiter & Steinbach, 1989), for example, show
that competent behavior in a domain is not
characterized by flawless performance, but by
effective recovery from errors. Few real-world
learning situations inform a learner of the na-
ture of his error, the correct behavior to perform
in the future, and the place one can go to review
the correct behavior for the future. Few real
world environments are so brittle that they
admit only a narrow set of behaviors that are
considered to be adequate.

Permitting students to perform their own
error-recovery is both more natural in human
interactions, and may lead to greater learning.
Observations of everyday conversation as well
as interactions of learners with human tutors
show quite clearly a preference for self-correc-
tion on the part of the one making the error
(Fox, 1993; Schegloff, Jefferson, & Sacks, 1977).
When given sulfficient time from a human tutor,
students will often correct their own mistakes.
Empirical findings from two computer tutoring
studies that compared immediate feedback sup-
plied by an expert module, with delayed feed-
back that occurred at the end of a learning
session, show that immediate feedback, while
speeding up the lessons, can interfere with
students’ thought processes and block students’
own diagnostic reasoning (Lee, 1989; Schmal-
hofer, Kuehn, Messamer, & Charron, 1989).
Immediate feedback can lead to “guessing
strategies” which rely too heavily on tutor feed-
back and subsequently impair one’s learning
(Lee, 1989). In addition to these findings, it has
been shown (e.g., Shute, Woltz, & Regian, 1989)
that providing well-crafted hints thought to be
beneficial to the learner can have a detrimental
effect on the user’s learning process. While
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learning may initially be aided by the knowl-
edge-based support, over time it was found to
adversely affect both the learning time and the
amount of knowledge acquired. As an alterna-
tive to expert module support, Ohlsson and
Rees (1991) demonstrate how conceptual learn-
ing and self-correction in the area of mathemat-
ics can occur without external feedback and
instruction.

Place the to-be-lfearned material along
the path of least resistance. We must
acknowledge as learning environment designers
that the task we are analyzing is multifaceted.
The student operating a tutoring environment
is simultaneously developing mental repre-
sentations of, minimally, the domain of interest,
the tutoring system with which she interacts,
the task put before her, and her own reasoning
and problem-solving processes. There are many
aspects of the task of solving a set of algebra
problems with an algebra tutoring program
which have little or nothing to do with algebra
itself. Students learn to find the path of least
resistance through an assignment. Successive
guessing, for example, may be the easiest way
to elicit the answer to a problem from an ITS or
human tutor. In a comparison of immediate and
delayed feedback in a genetics tutor, Lee (1989)
replicated the finding by Anderson and col-
leagues that the immediate feedback condition
led to more rapid learning. However, subjects in
the delayed feedback condition provided more
correct answers in the posttest. Delayed feed-
back subjects thought more about the test ques-
tions during training and took more time to
notice incorrect responses. Their posttest per-
formances benefited from the opportunities to
observe change incorrect responses to correct
ones (Lee, 1989). Error identification has been
shown to improve with delayed feedback in
other domains as well, such as navigation games
(Lewis & Anderson, 1985). In contrast, the
greater guessing used in training by the imme-
diate feedback subjects appeared to be harm
their post-test performance.

Reasoning by analogy from given examples in
a textbook may be another (cf. Anderson, 1993;



146

Chi et al, 1989). In the ANIMATE system, a
conscious effort is made to make algebraic mod-
eling through equation construction the gate-
way into the system. Focus of the instructional
interaction is on the intended material (e.g. the
algebraic formalism). Feedback is provided by
the student and has meaning only with respect
to the appropriateness of the mathematics for
describing a situation.

EXPERIMENTAL INVESTIGATION

Initial findings with ANIMATE use (described
above) are very encouraging for the underlying
comprehension-based theory of learning and
problem solving, and for further exploration of
the UnITS approach. But the findings to date
are incomplete. In earlier studies none of the
other treatment groups received feedback com-
parable to that provided by animation in the
ANIMATE system. This may have been the vital
component that lead to superior performance.
In order to test this hypothesis, a new experi-
ment was conducted where all subjects received
feedback on their solution attempts. The com-
parison was made between the type of feedback
received by subjects. Subjects received either
the situation-based feedback suggested by the
comprehension model (Nathan et al., 1992), or
knowledge-based feedback of the type employed
by ITSs (Anderson, 1993; Koedinger & Ander-
son, 1993; Singley et al., 1989).

METHOD

Subjects

Forty undergraduates from the University of
Pittsburgh signed up to be in this study in order
to meet the requirements for their introductory
psychology course. Seven subjects were
dropped from the experiment due to problems
with their respective computer-based learning
environments. Two subjects failed to follow
proper directions. Thus, data from thirty-one
subjects are used in the final analysis.
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Materials and Design

The materials consisted of a test booklet, a
pen, and an Apple Macintosh 11 workstation
which ran the ANIMATE (version 2.1) or the
ANIMATE+K (ANIMATE plus Knowledge-based
feedback) learning environment under Hyper-
card™ 2.0. The test booklet contained a pretest
section, a set of training tasks that were used
with the computer, and a posttest section. Each
section was introduced with a page of instruc-
tions. The pretest, training task and posttest
each contained three story algebra problems—a
travel problem scenario, an investment scenario,
and a combined work scenario—typed one prob-
lem to a page.

Subjects were assigned to either the knowl-
edge-based feedback group (knowledge FB) or
the situation-based feedback group (situation
FB) according to the order in which they signed
up for participation in the experiment. Subjects
in both groups received the same problem-
solving tasks and the same task instruction. The
two groups differed in the learning environment
that they used to solve the training problems.

Situation-based feedback. Situation
FB subjects used the ANIMATE system, as de-
scribed above. The animation is driven by the
values and operators subjects provide in the
equations that they construct during their solu-
tion attempts (for detailed description of the
system, see Nathan et al., 1992). Subjects are
free to revise the situation or solution at any
time. The animation provides a form of situ-
ation-based feedback for the formal mathemati-
cal elements of a solution.

Knowledge-based feedback. Subjects
in the knowledge FB group used ANIMATE+K, a
variant of the ANIMATE system which was aug-
mented with knowledge about the sequences of
equation construction which would ensure a
legitimate solution. Animation of the situation
as a source of feedback was disabled for this
treatment. Instead, subjects were given immedi-
ate feedback in the form of pop-up messages
when they strayed from one of the allowable
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Figure 2. The Knowledge-Based Feedback in ANIMATE +K Initially
Provides a Hint That Something is Wrong with the Student’s Solution

solution sequences. Upon their first error, a
subject in the knowledge feedback group was
told that the equation, value, variable, or opera-
tor that was just entered into the workspace was
incorrect (Figure 2). At the second error, the
subject was given a hint for a next step in the
solution (Figure 3). Upon the third error for the
same state in the solution search space, a sub-
jectreceived a short description of the relevant
algebraic concept that could be used to address
that aspect of the problem.

Procedure

Each subject was seated in front of a com-
puter workstation and received a booklet and a
pen. Subjects were told that they would be
presented with a novel way to reason about and
solve algebra story problems. The training in-
volved use of an interactive computer program.
It was stated that prior to their use of the
computer program it was necessary to see how
they would perform on a preliminary test. The
pretest was then administered without the use
of a computer, and was terminated only when
the subject was finished with all test problems.

Subjects then entered the training phase. The
training phase had three distinct components:
Subjects were familiarized with the use of the

computer workstation; they were shown how to
use the learning environment appropriate to
their treatment group; and finally, subjects
solved problems in the training section of their
booklets using the assigned learning environ-
ment.

At the beginning of the training phase, sub-
Jects were introduced to the general workings
of the computer interface. This involved teach-
ing and/or reviewing the use of the rolling
mouse cursor, entering numbers and letters
with the keyboard, and using the mouse to

“select {i.e, highlight) objects and push buttons

presented on the screen.

After going over the basic interface function-
ality, subjects were shown how to set up an
example algebra solution and an associated
problem scenario. Subjects learned how to se-
lect components of an algebra expression from
an equation palette and build up a set of alge-
braic equations which model a problem sce-
nario. Subjects also learned how to select
characters that served as central figures in the
problem and how to arrange them on the screen
so they model the initial situation expressed in
the problem text. Subjects were shown that they
could construct the mathematical aspects of the
solution and the situation aspects in any order



148

INTERACTIVE LEARNING ENVIRONMENTS Vol. 5

550 500 450 400 350 300

250 200 150 100 50

R D

T

SR S AN L L B

ie ] A

Distance travel)
current work.

Distance traveY

HINT#2. It is common to over-generalize
‘tater than’ to mean minus. Please check your

He!

‘ v Net '
New Pmbleml

I Pick Character 1 l
l Pick Charocter 2 l

Quit

Rate
(Dist/Hr)

Figure 3. When an Error Continues in ANIMATE +K, the Second Hint is
Directed to the Underlying Missing Concept or Misconception that is
Believed to be the Cause of the Error

they liked. They were then given an opportunity
to construct several simple scenarios on their
own to explore the flexibility and utility of the
interface. All subjects received immediate feed-
back for simple syntactic errors, such as produc-
ing unbalanced, incomplete, or algebraically
illegal equations.

ANIMATE users then learned how the anima-
tion was causally linked to the mathematical
equations that they constructed. By selecting
the Run button (Figure 1) subjects saw the
animation being executed in accord with the
values and relations contained in the current set
of equations. The animation and its associated
gauges provided feedback for the equations.
Changes in the equations resulted in changes in
the behavior of the animation. Their goal was to
get the animation to depict the events of the
problem situation as they understood it, based
on the cover story of the problem. If the anima-
tion failed to do this, then it must be due to an
error in their current algebra solution.

ANIMATE+K users did not have the simula-
tion capability provided to ANIMATE users, but
were instead shown how their system could
detect erroneous solution steps. Subjects were
shown the various levels of feedback they would

receive as soon as they made an error. They were
then able to use the information provided by the
system to correct mistakes.

In the final training component, subjects
were instructed to solve three algebra story
problems—a travel problem, an investment prob-
lem, and a work problem. The problems were
presented in random order for each subject. All
subjects were free to determine when they were
done with each problem. Subjects were in-
structed that their final answers (often a set of
equations) were to be recorded onto the appro-
priate page of the training section of the book-
let.

Scoring

Problem solutions were scored against a se-
ries of solution templates which contained all of
the steps needed to produce a quantitative
solution to a given problem. A score for a
problem solution reflected the proportion of the
steps or solution components that overlapped
with one of the templates. Novel solution ap-
proaches were compared to newly formed tem-
plates, which were constructed as needed.
Solutions which contained a set of solution-ena-
bling equations with no intermediate solution
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steps (i.e., a complete solution where no work
was shown) received full credit. Each problem
was scored out of one total point. The pretest,
training tasks, and posttest each had a maxi-
mum score of three points.

RESULTS AND CONCLUSIONS

Problem-solving Performance

Subjects in the two different treatment
groups participated in identical pretests, with
no experimental manipulations present. Sub-
jects in the situation group received an average
pretest score of 1.65 {out of a possible three
points), while those in the knowledge group
scored 1.74 points on average. A one-way
ANOVA of students’ performances using pre-
test score as the dependent measure shows no
significant treatment differences on the pretest,
#30) < 1.0, p = n.s. From this, we can safely
assume that, as a group, subjects arrived with
similar knowledge of the algebra subject matter
that is investigated in the experiment.

A one-way analysis of covariance (ANCOVA),
using posttest score as the dependent measure
and pretest score as the covariate reveals that,
on average, subjects’ scores improved signifi-
cantly from pretest to posttest,
F(30, 1) = 17.0, p = .0003.

While subjects all improved on average, there
were important differences attributable to treat-
ment and problem type. In general, subjects
using the ANIMATE system with situation-based
feedback showed greater gains than subjects
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receiving knowledge-based feedback, though
this advantage did not hold across all of the
posttest problems. As Table 2 shows, situation
FB subjects showed greater improvement for
travel problems and investment problems, but
showed inferior gains on work problems. An
ANCOVA with posttest score on the travel prob-
lem as the dependent measure, pretest perform-
ance and total SAT (with 2 missing values) as
covariates, and treatment as a between-subjects
factor, showed a significant difference due to
treatment, F(27, 1) = 4.77, MSe = 0.4, p < .05.
The means (see Table 2) reveal that situation
subjects had greater test gains than knowledge
subjects. A similar analysis for investment prob-
lem-solving gains (with total SAT scores as the
sole reliable covariate) also showed a significant
effect for treatment,
F(28, 1) =57, MSe = 1.06, p < .025. As with
travel problems, the means indicate that situ-
ation FB subjects achieved greater posttest per-
formance than knowledge FB subjects.
Situation-based feedback, as provided by ANI-
MATE, produced more effective training than
did the knowledge-based feedback on solving
later travel and investment problems without
use of the computer.

Subjects did not show this same -pattern of
results for work problems, however. An AN-
COVA with posttest score on the work problem
as the dependent measure, total SAT (with 2
missing values) as the covariate, and treatment
as a between-subjects factor, failed to show a
significant difference due to treatment,
F(28, 1) <2.24, MSe = 0.21, p = n.s. Thus, per-

Table 2. Group size (n), and mean proportional performance improvement
(along with standard deviations) for the travel, investment, and work problems

as a function of treatment

Improvement
Problem Type Treatrnent n (standard deviation)
Travel Situation feedback 17 767 (.07)
Knowledge-based feedback 14 57 (.08)
Investment Situationfeedback 17 767 (11
Knowledge-based feedback 14 43(.14)
Work Situation feedback 17 .34 (.07)
Knowledge-based feedback 14 .51 {.09)

o < .05
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formance differences of the two groups due to
differences in training on this task was not
distinguishable.

Analyses of the quantitative structure that
underlies various algebra story problems has
shown important differences across problems
(Hall et al, 1989; Shalin & Bee, 1985). Work
problems such as the one used differ markedly
from motion and investment problems in their
use of the intensive quantity (i.e., the rate at
which a character completes a job when work-
ing alone). In their solutions, students needed
to think about and manipulate the reciprocal of
the given quantity (the most common error of
commission for work problems during the pre-
test). Thus, given the fact that A small hose
can drain a pool in six hours by
itself, the solver must appreciate that the
relevant quantity for an algebraic solution is not
Rate = 6 hours per pool, butrather,
Rate = 1/6 pool per hour. The sys
tem that provided subjects with knowledge-
based feedback may be naturally better than
situation-based feedback at conveying this use-
ful fact. Situation-based feedback relies on the
transparency of an error with respect to the
associated situational animation. Many forms of
error are properly conveyed this way: improper
relative rates, delay information, the non-linear-
ity of compound interest, and so on. These are
aspects of the situation which map directly to
the mathematical concepts that serve to model
these events. Certain aspects of the algebraic
problem-solving method, however, are more ef-
fectively learned when they are directly told to
the student. The subjects in this experiment
who made the workrate error (e.g., entering a
rate of 6 instead of 1/6) while working with the
ANIMATE system saw that the relative rates
were incorrect {the wrong character was fastest
at completing the task), but often could not
glean from the situation feedback that the recip-
rocal was the necessary quantity to rectify the
error. There was no direct means by which the
system could communicate this to the subject.
Users of the ANIMATE+K system, however, were
told by the system to examine the rates entered,
and eventually as the error persisted, to use the
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reciprocal so that the units were consistent with
the other quantities entered into the equation.
This direct lesson carried over to the posttest
problem-solving performances of these subjects.

Problem-solving Process

An analysis of subjects’ solution errors was
also conducted which focused on the frequency
of errors made for information explicitly given
in the problem statement, and needed informa-
tion that was alluded to but not explicitly pro-
vided.

Inference-making

The most frequent type of error made during
pretest was for information that was alluded to
but not explicitly provided by the problem text,
and consequently was. dependent upon the
solvers’ use of inference-making. Of the 338
classifiable pretest errors made by the 31 sub-
Jects solving three problems, 247 of them (73%)
were tied to information that had to be inferred
from the cover story (Table 3). Unstated but
necessary components of the problem solution
tended to be omitted from the solution protocol
more often (84% of the time) than they were
included but improperly formulated. Those er-
rors tied to given problem information (91 er-
rors in all, or 27% of all classifiable pretest
errors) tended to be misformulated in subjects’
solution attempts (62%) more often than they
were omitted from the solution protocols. This
indicates that subjects are generally less suc-
cessful at elaborating on the given (but incom-
plete) problem statements they are provided
with in order to produce a correct and complete
solution. Given information is a strong signal for
its inclusion in a solution, although it may not
be properly mathematized (i.e., translated) by
the subject into an expression that correctly
models the problem situation. These findings
are consistent with prior results reported else-
where (e.g., Nathan, 1992).

The reduction of these errors provides insight
on the differential effects of the two treatments.
While subjects in both conditions enjoyed simi-
lar improvement in providing and properly for-
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Table 3 - Frequency {and percentages) of pretest solution errors or all subjects of omission
and misformulation as a function of their explicit mention in the original problem statement
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Information Explicitly Given in

Information Inferred from

Problem Staternent Problem Statement Total
Omission 35 (38%) 208 (84%) 243
Misformulation 56 (62%) 39 (16%) 95
All 91 (100%) 247 (100%) 338

mulating information that was given in the
problem, subjects in the knowledge FB condi-
tion showed superior improvement for informa-
tion absent in the problem statement. As Table
4 shows, subjects receiving knowledge-based FB
as a form of direct instruction, reduced omission
errors by 42% across all problems, while situ-
ation subjects reduced them by 27%. In previous
work comparing ANIMATE users to users re-
ceiving no comparable form of feedback, the
reduction of errors elicited from the situational
feedback was sufficient to significantly elevate
ANIMATE users’ performance (Nathan et al,
1992). Here, too, the reductions achieved with-
out knowledge directed feedback is still impres-
sive. However, the impact of direct instruction
is greater.

While direct FB on the source of solution
errors supported the inclusion of unstated prob-
lem information best, situation-based FB was far
more effective at reducing errors of misformula-
tion for that same unstated (and so inferred)

information. ANIMATE users reduced errors of -

misformulation by 45% while those receiving
knowledge-based FB reduced them by only 11%.
Thus, knowledge-based FB tended to be more
effective in getting subjects to notice missing

“but needed aspects of their solutions, while the

situation-based FB tended to support more cor-
rect modeling of this information once it was
included in subjects’ solution attempts. It is
because of this that ANIMATE users ultimately
achieved superior performance.

DISCUSSION

The earlier review of this article was highlight
the essential role that learning theories play in
the design and development of learning environ-
ments. However, as we strive to develop the
science of learning environment design we must
acknowledge the inherent limits of learning
theories in prescribing the final implementation
of learning environments. Theories of learning
are not theories of instruction (Cobb, in press).
It may also be necessary to contrast theories of
learning and instruction in order to make clear
the assumptions of a design, and to empirically
counterpose alternative designs to better see
their strengths and limitations.

The experiment presented here took this per-
spective by comparing changes in the problem-
solving processes and performances of students
exposed to two tutoring environments con-
ceived within different learning approaches. The

Table 4. Proportion of error reduction (from pretest to posttest) acheived by the treatments
for errors of omission and misformulation as a function of their explicit mention in the original

problem statement

Explicitly
Given in
Prblem
Treatment Error Types ~ Statement Inferred from Problermn Statermnent
Situation Omission .50 .27
Misformulation .64 .45
Knowledge Omission 4 42

Misformulation .75

NE
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results suggest that training with the ANIMATE
system, and its use of a particular form of
interaction—whereby the learner is encouraged
to interpret feedback at a situational level in
order to assess mathematical performance—is
sufficient to produce large and lasting learning
gains in the complex area of algebra story prob-
lem instruction. These gains may also be under-
stood in relation to the comparison treatment,
for these subjects, too, progressed in ways that
are not to be dismissed. Perhaps most impor-
tantly, there were trade-offs found between the
two treatments. The results suggest that, while
the gains are superior with the ANIMATE sys-
tem, there are additional and worthwhile gains
to be had from direct and immediate feedback
provided by embedded domain knowledge that
are not obtained from situational feedback. Spe-
cifically, subjects’ were able to correct and avoid
certain types of errors involving the use of
intensive quantities that were not readily re-
flected back to them by the animation. Such
findings are extremely valuable in supporting
the attempt to improve our understanding of
learning environment design.

Noticing and Direct Instruction

The nature of the differences in problem
solving produced by these systems suggests
that the ANIMATE system could benefit by
making errors more salient to the learner. Novice-
students do not always perceive the situation as
experts would have them perceive it, and thus,
may not notice important differences between
situations. In this study, for example, Work
problems look a lot like Travel problems, so
many subjects in this study thought that the
work rates (number of hours to perform a job)
may treated similarly to the motion rates {e g,
added, subtracted, plug in the given values from
the problem description). However, this was not
the case since the rates provided in the problem
were reciprocals of what subjects actually
needed to solve the Work problems.

When novices first encounter the application
of a new principle they don’t necessarily have
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the discrimination skills to notice what they
need to notice in order to apply it or recognize
its misapplication {e.g., Garner, 1974: Randolph
& Evertson, 1992). Specific cues which direct
the learner’s attention to the new concept play
a critical role in the development of the pattern
recognition skills necessary to notice relevant
features in new situations {Bransford, Franks.
Vye & Sherwood, 1989). Such cues can be
provided by learned others, or by domain knowl-
edge embodied in a computer-based tutor.

The ANIMATE system provided animation-
based feedback to support students in noticing
that “something is wrong,” as when the incor-
rect character works faster. But the system
apparently provided no direct way to focus sub-
Jects’ attention to more subtle things such as
the need to work with the reciprocal of the given
rates for some problems. As vivid as the anima-
tion may be for aspects of the problem-solving
process, it was too indirect to support subjects’
awareness of the units involved and the need to
Create a new quantity (portion of job/hour) to
properly reason about the quantities of Work
problems. In contrast, the knowledge-based
feedback of the ANIMATE+K system provided
direct instruction on the need to invert the
given work-rate quantity. Subjects were explicitly
made aware of the units in the problem statement,
and the need to have them altered for the solution
schema. This direct instruction left little to be
misunderstood or missed by the learner. Prior to
their noticing, students could do little with any
information about the role or different nature of
the rate variable in the Work problem. Once
learned in the context of the problem-solving
activity, this information remained accessible to
most learners during the posttest when no outside
tutor support was available.

Providing Support for Error Detection
and Correction

As the field of computer-based instruction
matures, researchers and practitioners are real-
izing the great complexity of the task that lies
ahead. The goal of the developer of a learning
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environment is to foster learning that will trans-
fer to conditions outside of the instructional
environment. In this more authentic setting
there may be no dedicated expert monitoring
one’s progress, signaling errors and giving ad-
vice. The environment may not be so coopera-
tive as to provide feedback which is salient and
meaningful. Many authentic learning situations
are similarly unsupportive.

Alternative 1: Feedback from a
Domain Expert Module

Generally, the view has been that for learning
to occur, feedback must come from some source
external to the learner which is capable of
interpreting the original output behavior and of
comparing it to an ideal. The assumption that
fosters this approach is, presumably, that the
learner is not able to perform this comparison
function; that this is, after all, the sought-after
behavior and the reason that learning needs to
occur. Thus, as ambitions grew for computer-
based learning environments, the sophistication
of the comparator capable of assessing the
learner’'s output with respect to some ideal
necessarily grew in sophistication, until it
achieved the status “intelligent.” As knowledge-
engineering techniques were refined and knowl-
edge representation tools became more
powerful, faster, more accessible, and more flex-
ible, the attainability of knowledge-based feed-
back increased. We now live in an age where a
number of ITSs exist.

We are also at a point where it is worthwhile
to reflect on the prospects of intelligent systems
for education. Certainly there is cause to ap-
plaud these efforts. The instructional impact of
a few well-tested systems developed under large
research and development grants is worth not-
ing. However, it is also valuable to ask why there
are not more of them. Certainly, artificially
intelligent tutoring is not yet a practical consid-
eration from a financial point of view for most
educational programs (Chipman, 1993). For this
reasons, it is worthwhile to keep in mind low-
tech options.
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One of the major goals of the UnITS research
program is to see how far computer assisted
instruction can get without constructing a
knowledge base and a student model. This pro-
ject has yielded several important insights into
the construction process of learning environ-
ments, several of which have been articulated
in this article. Now we can reflect on more
recent empirical results which acknowledge the
value of knowledge-based feedback to support
learning where an exclusive use of situation-
based feedback cannot. The goal is still to hold
onto the principles developed for the student-
centered learning experience articulated earlier
that encourages knowledge elicitation from the
user. But we now can explore how knowledge-
based feedback can most effectively be intro-
duced into the system design when knowledge
elicitation techniques prove to be insufficient.

One approach, clearly, is a selective develop-
ment of domain knowledge packets that may be
introduced into the system feedback mechanism
and provide direct feedback of the kind demon-
strated by the prototype. This approach inherits
some of the advantages of large-scale ITSs. such
as immediate and direct knowledge-based feed-
back. It inherits some of the limitations of ITSs
articulated earlier in this article as well.

Since the earliest stages in its design, the
ANIMATE system was intended to draw from
the students themselves the monitoring and
evaluation processes that are needed for mean-
ingful feedback. Feedback closes a loop. In
systems theory, its purpose is to provide a way
to monitor the actual output of a system and
compare it to the intended output. By compar-
ing these two values, an appropriately designed
system can correct itself. It has long been known
that feedback for behavioral and cognitive sys-
tems can promote learning of certain behaviors
and speed up their acquisition.

Alternative 2: Student Self-monitoring
and Self-assessment

An alternative approach is to consider the
larger environment within which the “unintelii-
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gent” system is embedded, and to ask whether
or not that environment can provide the neces-
sary scrutiny for performance assessment and
correction. Two different educational ap-
proaches provide instances of such environ-
ments that are worth considering: Prompted
self-explanation, and reciprocal teaching. .
Researchers studying successful and less
successful learners have identified active self-ex-
planation processes that enhance comprehen-
sion monitoring and knowledge building during
problem solving (Chi et al, 1989; Pirolli &
Bielaczyc, 1989). Comprehension monitoring in
particular has the advantage of focusing the
student’s attention on behaviors and outcomes
that appear to be inconsistent with one’s knowl-
edge-based expectations. More recently, it has
been shown that these self-explanation proc
esses may be taught to experimental subjects
(Bielaczyc, Pirolli & Brown, in press; Chi et al.,
1993; Nathan, Mertz, and Ryan, 1994). Nathan
and colleagues showed that while successful,
training advantages seem limited to declarative
knowledge acquisition. Bielaczyc and col-
leagues (in press) have argued that teaching self-
regulation strategies is a necessary component
in the successful teaching of self-explanation
strategies. Lin (1993) has demonstrated that

users of a computer-based learning environment-

can be alerted on-line to the need for compre-
hension monitoﬁng and reflection on their cog-
nitive activities, and that this can lead directly
to enhanced learning and transfer.

Group discussion methods such as Reciprocal
teaching (Brown & Palincsar, 1989; Palincsar &
Brown, 1984) can also lead to improved compre-
hension monitoring on the part of the student
and foster greater learning. In this approach,
students internalize a structured study strategy
that identifies knowledge gaps and supports
their clarification. They explicitly work on the
task of comprehension through collaborative
efforts. Students share their knowledge and
help the group to achieve a clear sense of what
is understood and what is not, and identifies
ways in which confusions may be resolved. The
incorporation of this approach into larger class-
room projects has met with great success in the

INTERACTIVE LEARNING ENVIRONMENTS Vol. 5

*Schools For Thought™ program (e.g.. Lamon et
al., in press). The introduction of such compre-
hension monitoring practices should also be
explored within learning environment designs.
A variety of methods. knowledge elicitation
from the individual learner, from a group of
learners, and from an expert system provide
ways for the learner to gain knowledge in the
face of solution errors and provide for learning
gains. All of these approaches enjoy empirical
and theoretical support, and shape the charac-
ter of the learning process offered by a learning
environment. As we organize the findings put
forth by researchers in the cognitive and learn-
ing sciences, we may find that certain domains
and learner populations have an affinity to
certain learning approaches, and that these may
be manifest in particularly effective learning
environments. The path from domain knowl-
edge to learner knowledge is a complex one, and
we must ultimately examine all of the facets of
learning and instruction as we develop the
science of learning environment design.
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NOTES

1. Many tools, such as interpretive programming lan-
guages (e.g., BASIC and LISP) and popular video games
have this feature.

2. State-based feedback is a form of feedback governed
solely by the state of the system. Consequently, the user can
expect to receive the same response from the system when-
ever it is in that particular state. This is contrasted with
performance-based feedback which is influenced by some
(inferred) state of the user based on the user’s prior per-
formance with the system. This distinction grew out of
discussions with Thad Crews.
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3. The notion that a problem model is a distinct repre-
sentational form from the situation model is based on the
finding that it is possible to independently manipulate
solvers’ problem models by varying textual cues while still
showing agreement in all other respects in their mental
representation for the problem (Mertz, 1993).

4. Of course, once one starts to examine the nature of
the knowledge embedded in tutoring systems and their
manner of use, it becomes readily clear that the term
“intelligent tutor” is also quite misleading. The existence of
- such systems has not, for example, settled the debate as to
whether computer systems can actually be intelligent (e.g,
Dreyfus & Dreyfus, 1986; Wertheimer, 1985). For most
systems it is far more meaningful to characterize the nature
of the interactions that emerge between system and user.

5. This is consistent with the concept of procedural
facilitation, where learning is entrusted to the student, and
the role of instruction is to facilitate the learning (Brown &
Palincsar, 1989; Collins, Brown & Newman, 1989).

6. Correspondence, either spatial or conceptual, is a key
aspect for integrating multiple views of an object, scene, or
concept. The process. however, is computationally very
demanding (cf. Magee & Nathan, 1987).
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