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Pattern Generalization with Graphs
and Words: A Cross-Sectional and

Longitudinal Analysis of Middle School
Students’ Representational Fluency

Mitchell J. Nathan and Sunae Kim
University of Wisconsin-Madison

Cross-sectional and longitudinal data from students as they advance through
the middle school years (grades 6–8) reveal insights into the development of
students’ pattern generalization abilities. As expected, students show a pref-
erence for lower-level tasks such as reading the data, over more distant pre-
dictions and generation of abstractions. Performance data also indicate a
verbal advantage that shows greater success when working with words than
graphs, a replication of earlier findings comparing words to symbolic equa-
tions. Surprisingly, students show a marked advantage with patterns pre-
sented in a continuous format (line graphs and verbal rules) as compared to
those presented as collections of discrete instances (point-wise graphs and
lists of exemplars). Student pattern–generalization performance also was
higher when words and graphs were combined. Analyses of student perfor-
mance patterns and strategy use contribute to an emerging developmental
model of representational fluency. The model contributes to research on the
development of representational fluency and can inform instructional prac-
tices and curriculum design in the area of algebraic development. Results
also underscore the impact that perceptual aspects of representations have on
students’ reasoning, as suggested by an Embodied Cognition view.

Representational fluency is growing in importance as the mathematics education
community strives to reform instruction and curricula to provide students with
learning experiences that expand beyond the narrow emphasis on equations (e.g.,
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Zazkis & Liljedahl, 2002). This shift is especially important as more students are
introduced to algebraic reasoning as the study of mathematical objects and rela-
tions (e.g., Saul, 2001). There are many ways of representing numerical informa-
tion, and students must learn to gain facility with a wide range of them. Two such
representational forms are graphs and words.

Graphical representations are important to representational fluency because
they show relationships spatially and extend students’ range of quantitative repre-
sentations and forms of reasoning. Graphs take on particular importance because
they appear in a variety of fields outside mathematics, particularly in the physical
and social sciences, where they are used to represent data and express theoretical
relationships. Words are ubiquitous and are used to represent ideas and relations
inside and outside the domains of math and science. However, words have always
been important to mathematics and mathematics education, in part, because verbal
representations can carry ideas across disciplines. Words are also very expressive,
and facility with words helps people communicate their mathematical ideas and
understand the ideas of others.

Representations can be in words or graphs, but they can also present patterns
and functions as discrete (or digital) forms, or be continuous (or analog; see Case,
1985; 1992; 1996). One way to capture the discrete quality of a pattern is to show it
as a collection of instances, such as points on a graph or a verbal list of examples,
as when one collects data or conducts discrete trials of a simulation. The presenta-
tion of a pattern in a continuous form can include a graphical line or curve; or in
similar fashion, as a verbal rule that portrays the entire relationship in a holistic
manner. Thus, patterns can be depicted as a collection of related instances or holis-
tically, in both verbal and graphical forms.

In this study we examined how different ways of presenting patterns affected
the pattern generalization performance of middle school students. This was part of
a larger aim of understanding the development of students’ algebraic thinking
(Tier 1) within the Supporting the Transition from Arithmetic to Algebraic Rea-
soning (STAAR) project (Nathan & Koellner, this issue). Our colleagues (Alibali,
Knuth, Hattikudur, McNeil, & Stephens, this issue) explored other facets of repre-
sentational fluency, particularly students’ development of equal sign understand-
ing and its relation to equation solving. In this article, our emphasis is on the uses
of graphical and verbal representations. We were motivated by several general
questions about the influences on US middle school students’ (grades 6, 7, and 8)
pattern-generalization performances and strategies. In addition to documenting
developmental changes, we wanted to know:

1. How do different task demands affect students’ performances?
2, How do students’ performances differ when tasks are presented as discrete

versus continuous patterns?
3. How do differences in representation influence students’ performances?
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REVIEW OF PRIOR RESEARCH

To explore these general questions, we will first selectively review the literature on
representational differences in mathematical reasoning, particularly works about
problem solving and generalization using words and graphs. We will include the
influence of task differences that vary the demands placed on the student. We will
also look at reported findings on the differences in students’ reasoning and perfor-
mance for patterns presented in discrete and continuous forms. This review will
help us construct a preliminary model of the development of representational
fluency, and revise these general questions so they reflect the current understand-
ing of the field more accurately. The model will allow us to make specific predic-
tions that can be tested with cross-sectional and longitudinal data analyses. The
new findings that emerged from these analyses led us to propose a revised model of
the development of representational fluency that includes influences of pattern
presentation and task demands. Finally, we will discuss the implications of this
model and our findings for teaching and learning and for future research on repre-
sentational fluency.

Fluency with Graphs

A review of the literature reveals that children have many areas of confusion about
the meaning and uses of graphs (Friel, Curcio, & Bright, 2001; Leinhart,
Zaslavsky, & Stein, 1990). Some of the errors commonly made suggest children
often have a poor understanding of the basic meaning of graphs as depicting rela-
tions between specific quantities. For example, children tend to interpret graphs
literally, and may expect the shape of a graph to match the shape of the situation
being represented (Clement, 1985; Monk, 1992; Smith, diSessa, & Roschelle,
1993) rather than a quantitative relation among values (such as speed and time).
Other problems suggest a lack of understanding of the graphs’ components
(Beichner, 1994; Leinhardt, Zaslavsky, & Stein, 1990). Students can also project
certain notions of linearity on graphical representations and impose a slope of one,
axis scales of one (Lehrer & Schauble, 2001), or a zero intercept (Hadjidemetriou
& Williams, 2000; 2001; Kaput & West, 1994). Students can also become fixated
by the boundary frame of the graph, to the exclusion of the pattern represented
within its bounds (Bieda & Nathan, 2006; Stevens & Hall, 1998). Taken together,
these findings suggest that graphs are difficult for learners, and we can expect to
see reduced performance on patterns presented graphically.

Fluency with Words

Past research on students’ mathematical reasoning and development has also re-
vealed the important role of verbal representations (Kaput, 1992; Nathan &
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Koedinger, 2000). Koedinger and Nathan (2004) compared the performance and
strategies of inner-city high school students (N = 76) who had successfully com-
pleted an algebra I course. They were given arithmetic and algebraic equations or
matched problems using words. Verbal problems were either presented as story
problems that included a situational context, or word equations that verbally de-
scribed the relations found in symbolic equations, without an explicit problem
context. Regardless of the representations used, all problems shared the same un-
derlying quantitative structure. This design allowed Koedinger and Nathan (2004)
to analyze performance differences between symbolic and verbal formats inde-
pendent of context (word equation vs. equation), as well as the impact of context
(story vs. word equation). They found that the high school algebra students demon-
strated higher levels of performance (about 64% correct), solving the verbally pre-
sented story and word equation problems through the strategic application of
highly reliable, invented solution strategies (such as unwinding and guess-
and-test), while at the same time struggling to solve matched equations (getting
about 43% correct; experiment 1). This verbal advantage has proven to be quite re-
liable across a range of populations and tasks, including other high school students
(N = 171; Koedinger & Nathan, 2004, experiment 2), middle school students just
learning algebra (N = 90; Nathan, Stephens, Masarik, Alibali, & Koedinger, 2002),
community college students (N = 153; Koedinger, Alibali, & Nathan, in press, ex-
periment 1), high-performing university students (N = 65; Koedinger et al., in
press, experiment 2) and preservice teachers (Zazkis & Liljedahl, 2002; see also
Knuth, Alibali, Weinberg, McNeil, & Stephens, 2005). Based on these findings,
we expect to see a verbal advantage for pattern generalization when we compare
performances with patterns presented using graphs and words.

Discrete and Continuous Representational Forms

Along with the representational differences reviewed above, we can compare how
people reason about patterns that are presented as discrete or continuous. This is
not an arbitrary distinction. Rather, this dichotomy parallels common psychologi-
cal dimensions. Case’s (1985; 1992; 1996) theory of how children develop under-
standing in any domain of study is that two initially separate but relevant types of
understandings (primary mental schemas) are first developed in isolation and then
become integrated through appropriate instructional experiences. One type of un-
derstanding is primarily sequential and digital, favoring words, numbers, and indi-
vidual data points. In this form, a pattern may be a collection of instances. The
other is spatial and analogical, and includes line graphs and illustrations. Here, the
pattern, and its underlying relation, is presented in a continuous manner. Case’s
theory states that, in time, children can integrate these schemas; and when they do,
their understanding of a domain is transformed and a new psychological construct
is produced that underpins all current and further learning in the domain. However,
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early on, their reasoning is dominated by the separate forms of understandings me-
diated by the two different classes of formats.

Kupermintz and Nathan (2004) explored the impact of discrete and continuous
patterns on student problem solving. Suburban middle school students (N = 173)
were asked to reason with and across graphical, symbolic, tabular, and verbal rep-
resentations, including making near and far predictions and producing mathemati-
cal generalizations. In addition to varying the representations given to students,
one of the critical distinctions of the design was whether the patterns were pre-
sented in either a discrete or continuous mode. When student responses were factor
analyzed, the authors identified two underlying dimensions to students’ thinking:
one that favored discrete reasoning (they called it the instance-based mode), and
one that favored continuous reasoning (the relational mode). Each mode of reason-
ing exhibited different patterns of responses, suggesting that they drew on some in-
dependent cognitive processes and had separable developmental trajectories.

There is ample evidence that students draw on reasoning processes that favor
discrete and continuous forms of patterns. Which of these two forms of reasoning
develops first? Which types of problems do students find easiest? Some prior work
speaks to these questions. For example, Carswell (1992) posits that the skills at at-
tending to a specific point develop earlier than those directed at global judgment
and integration. Monk (1992) describes how calculus students find questions re-
garding global qualities of a function that cut across time as far more difficult than
point-wise questions. The “point-wise” view reflects students’ tendencies to focus
on the “level of specific values, of inputs and outputs” rather than “overall patterns
of behavior” (Monk, 1992, p. 193). Students do not necessarily make useful con-
nections between discrete forms of representations such as a point-wise graph, and
continuous forms such as a line graph of the same function. When given opportuni-
ties to reason, students tend to favor discrete representations, and will even assign
point-wise interpretations to continuous line graphs (Carswell, 1992; Monk, 1992;
Selden & Selden, 1992), sometimes at the cost of obtaining a more global interpre-
tation of a pattern (Goldberg, 1998). Findings like these may be explained, in large
part, by the curricular emphasis on making graphs from tables of discrete entries
that permeates students’ early mathematics education (Driscoll, 1999). Based on
these findings, it appears that reasoning about discrete patterns is more accessible
to students and may appear earlier in their mathematical development.

Integrating Representations

Establishing connections among representations is a central goal of algebra in-
struction (Brenner et al., 1997; Cuoco & Curcio, 2001; Driscoll, 1999). Yet, link-
ing between representations is very challenging, and students exhibit many short-
comings in this area (e.g., Knuth, 2000; Swafford & Langrall, 2000). Case’s theory
predicts that the ability to integrate across representations emerges after develop-
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ing fluency with the component representations. Based on this, we expect younger
students to exhibit the greatest difficulty reasoning with combined representations,
and for performance levels to increase with age.

Task Demands

In addition to the design characteristics of how the patterns are presented, it is im-
portant to consider the task demands based on the specific pattern generalization
questions asked of students. In their review of the literature on graph comprehen-
sion, Friel and colleagues (2001) pointed to a “somewhat surprising consensus” (p.
130) across a broad range of articles on the three dominant types of questions
asked of students. At the elementary level, the emphasis was on reading the data
(Curcio, 1987) directly from the graph. At the intermediate level, reading between
the data and drawing inferences was the focus. In the final level, the emphasis was
on reading beyond the data (Curcio, 1987) and “reduction of all the data to a single
statement or relationship about the data” (Bertin, 1983, in Friel et al., 2001, p.
130). There is evidence that students learn to make abstractions better when they
first can formulate predictions for specific instances and then apply inductive rea-
soning (Koedinger & Anderson, 1998). As Friel and colleagues point out, different
task demands elicit different levels of comprehension. Based on this prior work,
we can expect that students will perform best at making near predictions, struggle a
bit more with making inference-based far predictions, and have the greatest diffi-
culty reducing patterns presented in discrete and continuous forms to a single ab-
stract statement of the underlying quantitative relation.

Summary of the Literature

Graphical and verbal representations of patterns, on their own and in concert, are
important for establishing representational fluency. Patterns can also be presented
as discrete collections of related instances or as a continuous relationship among
varying quantities, and students appear to have access to reasoning processes that
parallel these differences (Kupermintz & Nathan, 2004). While much has been
studied about these different representational types, there is a need to better under-
stand how students’ abilities to reason with them develop over the middle school
years. Prior research, such as Case’s theory of conceptual development, suggests
that students’ abilities to operate with verbal and spatial forms on the one hand,
and discrete and continuous forms on the other, will develop independently of one
another. Findings by Koedinger and colleagues (e.g., Koedinger & Nathan, 2004)
suggest that a verbal advantage over graphs is likely to be seen; particularly in light
of the challenges exhibited by students working with graphs (e.g., Friel et al.,
2001; Leinhart et al., 1990). There is also evidence that discrete modes of reason-
ing may develop initially and provide early support for understanding and general-
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izing (Carswell, 1992; Monk, 1992). Later, as facility with the individual repre-
sentations matures, students can be expected to show fluency with combined
representations.

RESEARCH QUESTIONS

While the views given above are consistent with prior research, the developmental
implications are somewhat speculative at this point. To advance our understanding
of the development of representational fluency, we investigated student perfor-
mance using cross-sectional and longitudinal analyses.

We first examined cross-sectional performance differences among sixth-,
seventh-, and eighth-grade students as they made predictions and mathematical
abstractions of simple, contextualized linear functions. We then analyzed longitu-
dinal data from a cohort of students for whom we had annual performance assess-
ments across the entire middle school experience.

We approached these data guided initially by the three general research ques-
tions listed above. However, the literature review allowed us to refine some of
these questions so they better reflected the empirical and theoretical contributions
of earlier investigations. The literature also allowed us to make more confident pre-
dictions about student performance differences.

1. How do task demands of reading the data, reading between the data, and
reading beyond the data affect students’ pattern-generalization perfor-
mances?

We expected that near prediction (NP) tasks (reading the data) would develop
early, and be easier, than far predictions (FP; reading between the data); and FP
would develop before abstract (AB).

2. How do students’ pattern-generalization performances differ across the
middle school grades when they are presented as discrete and continuous
patterns?

We anticipated that students overall, and especially the youngest, would perform
better on problems presented in a discrete form that favors an instance-based mode
of reasoning, as compared to continuous patterns that favor a holistic and relational
mode.

3. How do representational differences (graphs versus words, or graphs and
wordscombined) influencestudents’pattern-generalizationperformances?
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We expected to see a verbal advantage (Kaput, 1992; Koedinger & Nathan, 2004)
of words over graphical representations across the grades, although it is likely to be
particularly strong among the youngest students who are likely to have the hardest
time with graphs.

We tried to integrate these various predictions into a single developmental
model for the typical student taking our assessment. The hypothesized trajectory is
illustrated in Figure 1. In considering the interactions among the three controlled
factors (task type, representation, and presentation mode), we expected that stu-
dents would demonstrate success with NP at the earliest stages of pattern-
generalization ability, regardless of representation and presentation form. We then
expected the advantages of verbal representations (in both the verbal and in com-
bined representations) to become more evident as the pattern-generalization tasks
became more demanding, replicating the verbal advantage reviewed earlier. We
also expected to see an advantage for discrete patterns over continuous ones, in
both the verbal and graphical representations. Once these differences were ac-
counted for, we would expect students to succeed on FP tasks prior to AB tasks.

METHOD

Participants

Participants were 372 middle school students (122 sixth-graders, 115 seventh-
graders, and 135 eighth-graders) from a middle-class community. The school used
the Connected Mathematics curriculum (Lappan, Fey, Fitzgerald, Friel, & Phil-
lips, 1998). Data collection took place every fall for three years and in the spring of
the third year using an algebra assessment that addressed many aspects of alge-
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FIGURE 1 Hypothesized developmental trajectory. (NP = near prediction, FP = far prediction,
AB = abstraction, Disc = discrete, Cont = continuous).
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braic reasoning, including students’ interpretations of the equal sign, uses of vari-
ables, writing and solving equations, and fluency with graphs and words. Findings
on students’ thinking and development of equal sign, variables, and equations are
presented elsewhere (Alibali et al., this issue; Knuth et al., 2005; Knuth et al., in
press; Stephens, 2005). In this article, we focused our analyses on two multipart
items from the assessment (described below) that documented students’ abilities to
predict and generalize linear patterns from discrete and continuous patterns repre-
sented with words and graphs. We will first present cross-sectional analyses of the
three grades for data collected during the first administration of the assessment.
We will then present findings from 81 sixth-graders for whom we have complete
longitudinal data through the end of eighth grade.

Materials and Procedures

The assessment presented pattern-generalization problems in the form Y = mX +
b, where b and m were small, positive, whole numbers. Problem representations
varied by test form between students, and were given either as graphs, words, or a
combination of the two (for the combined version, see Figure 2). Each of these test
forms contained two problems (a within-subject factor)—one presenting the pat-
tern as a collection of discrete instances (Figure 2a), and one presenting the pattern

REPRESENTATIONAL FLUENCY 201

FIGURE 2 Examples of two pattern-generalization problems using combined graphical and
verbal representations presented in (a) a discrete mode (a verbal list or point-wise graph) on the
left, or (b) a continuous (verbal rule or line graph) mode. The verbal condition received only the
text boxes (top), the graph condition received only the graphs (bottom), and the combined con-
dition received both the text and a graph, as presented.
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in a continuous form (Figure 2b). In addition, each problem consisted of three
parts: an NP, an FP, and an AB task. Examples of the two problems in graph form
are shown in Figure 3. Thus, there were a total of six items to be solved by each
student.

NP items asked for a Y-value corresponding to a given value of X (e.g., X = 10).
It is a near prediction because the solution was within the range of given informa-
tion when the item was presented in its discrete form. For example, in Figure 3 we
see in part a of the problem that X = 10 is asked about for a graph that reaches 14.
For FP tasks, students had to give a Y-value for a given value of X (e.g., X = 31)
that was outside the range of given information when that item was presented in its
discrete form, and therefore required extrapolation beyond the graph or list of en-
tries. Finally, for AB tasks, students were asked to “Write a mathematical equation
that you could use to find” the specific X-Y relation mentioned in the problems,
such as the total cost to make any number of copies of a CD (Y) if you knew the
number of copies you wanted (X). The AB item addresses students’ abilities to re-
duce “all the data to a single statement or relationship about the data” (Bertin,
1983, in Friel et al., 2001, p. 130). The NP, FP, and AB tasks were presented in the
same order on every test booklet for both discrete and continuous patterns.

Students were randomly assigned to one of three representational forms (graph-
ical, verbal, or combined) and were given the same assessment form across the
four test administrations. The assessment was given during students’ regular math-
ematics classes and administered by the teacher, following prepared instructions.
Students were told to use a pen, show their work (“If you want to cross something
out, just draw a line through it”), and to not use a calculator.

Scoring of Task Performance

Students’ written responses were scored for each of the six items; they received 0
points when an answer to an item was incorrect, and 1 point when an answer was
correct. We used strict criteria for NP and FP tasks, meaning the responses had to
exactly match the computationally correct answers. Each student was assigned a
score ranging from 0 to 3 for each of the three multipart items. They could receive
up to 3 points each for the two discrete and continuous pattern problems, for a total
possible score of 6 points. A second coder rescored a randomly selected 20% of the
data to establish reliability. Interscorer reliability was 99%.

Coding of Problem-Solving Strategies

Students’ problem-solving strategies were also coded for each item. Prior studies
(e.g., Hall, Kibler, Wenger, & Truxaw, 1989; Nathan & Koedinger, 2000) show that
aspects of student thought can be determined from careful analyses of solution pro-
tocols. Only those strategies that were relevant to the students’ answers were coded.
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Reliability for students’ strategies and errors was established by a second coder for a
randomly selected 20% of the data. The agreement between coders was 90%.

We will briefly describe several of the strategies that proved to be important for
our findings. Answer-Only (AO) responses included no work, but showed a
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FIGURE 3 Example strategies from a sixth-grader, shown (a) using the reading the graph (RG) for
discrete and (b) continuous presentation modes, (c) arithmetic rate (ARR), and (d) linear combination
(LC).
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response (unlike No Response (NR), which was blank). Use of AO suggests that
these items did not place a large load on students’ limited working memory capac-
ity, perhaps because they were seen as computationally easy, solved by direct
perception, or students were merely guessing. Reading the Graph (RG) was evi-
dent in both discrete (Figure 3a) and continuous (Figure 3b) patterns when stu-
dents made marks or traced lines along any portions of the graphs. Arithmetic Rate
(ARR) is an arithmetic-based strategy in which students “plug in” values for the
rate and intercept. It is often taught explicitly by middle school teachers. In the ex-
ample (Figure 3c) the student first used the unwinding strategy (cf., Koedinger &
Nathan, 2004) to strip away the $3 overhead rental charge from the $15 late fee that
was assessed for 6 days. The student then computed the rate of “$2 per day,” which
was applied to 10 days, and then added to the $3 rental fee, for an answer of $23.
Notice that in part c of the problem, this seems to support a general relation, A × B
+ C. With the Linear Combination (LC) strategy (Figure 3d), the student uses the
established correspondence between X (days late) and Y (dollars charged) to set
up a general linear relation, much like proportional reasoning, but one that includes
the intercept or overhead amount. Notice in part b, the list entry for 6 days late is
literally equated with the value of 15 (the total late fee). Since the student’s goal is
to compute the total late fee for 31 days, the student sets up a relationship between
6 and 31; that is, 31 days = 6 days × 5 + 1 day. To determine the parallel relation in
terms of dollars (late fee), the student multiplies 15 (i.e., the fee for 6 days) × 5 + 2
(the fee for 1 day).

RESULTS

Our aim is to articulate aspects of middle school students’ development of repre-
sentational fluency for patterns using cross-sectional (N = 372) and longitudinal
performance data (N = 81) and insights from students’ strategy use.

Cross-Sectional Analyses

We will first consider grade-level differences for overall performance of the stu-
dents during the first year of assessment, in which students can score a total of 6
points for the three tasks (NP, FP, AB) presented in both discrete and continuous
modes. As one might expect, there were reliable differences across the grades for
overall performance, F(2, 369) = 21.32, p < .05. During the first year of the study,
eighth-graders (M = 2.9 out of 6 total points) significantly outperformed sev-
enth-graders (M = 2.4), and seventh-graders significantly outperformed sixth-
graders (M = 1.4), with the greatest difference in representational fluency occur-
ring between sixth- and seventh-graders.
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Differences Between Prediction and Abstraction. Prediction tasks are
typically seen as precursors to abstraction (e.g., Koedinger & Anderson, 1998). It
was our expectation (Figure 2) that NP and FP tasks, which require students to find
a corresponding output for a given input, would generally be solved more easily
and earlier than AB tasks, which involved reformulating the underlying relation-
ship into an equation. It was also expected that NP tasks would be easier than FP
tasks for all students, but especially the youngest in our sample. NP tasks asked for
the dependent variable (Y) for a given input amount (X), for a small input. This em-
phasized reading in the graphical case, since both the given and unknown amounts
were within the range of values shown. For the FP tasks, students had to reason
outside the given range.

Consistent with the literature and with our expectations, NP tasks were signifi-
cantly easier (α = .05) than either FP or AB tasks. This performance difference was
apparent in all comparisons, including grade, representational format, and the
mode of pattern presentation.

FP tasks were more readily solved than AB by sixth-graders. However, the suc-
cess rates for FP and AB tasks were quite similar among seventh-graders (30%
correct for FP, 34.3% for AB). By eighth grade, somewhat surprisingly, students
were more likely to get AB problems correct than FP items (46.3% correct for AB,
34.8% for FP).

These results raise the question about the relation of one’s FP strategy to one’s
success at the AB task. This is of interest, since the FP task asked students to extend
their reasoning beyond the given information. Normatively, we expect that solving
FP will lead students to develop an abstraction to support the generalization needed
to make a far prediction, as suggested by the hypothesized developmental trajectory
of Figure 2. That is, we expect there is some common underlying process that allows
one to make far predictions and also mediates performance on the AB task. If this is
so, performance on FP and AB tasks should be statistically related.

Specifically, we wanted to know if students maintained a consistent pattern of
performance on FP tasks relative to AB tasks; that is, were students always better
on FP than AB, or were they sometimes better at FP and sometimes better at AB?
Since performance on these two items is paired (each student was given both) and
nominal (i.e., they can only get each correct or incorrect), we used the McNemar
nonparametric test. If the test is significant, then it is assumed that the performance
on the two items is so inconsistent as to warrant two different processes involved in
the reasoning.

We found no differences for sixth- and seventh-graders for either discrete or
continuous patterns. This close relation of FP and AB performance suggests that
sixth- and seventh-graders are using similar abstraction processes when reasoning
about FP and AB tasks. However, significant McNemar tests of the eighth-grade
data indicated AB tasks were easier than FP tasks in both the discrete (p = .01) and
continuous (p < .001) cases. This could be construed as an important transition
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point in mathematical development in eighth grade, where students’ reasoning
about pattern abstraction deviates from, and in this case transcends, the reasoning
processes involved in making FPs.

Presentation Mode. We next consider performance differences due to the
within-subjects manipulation of the mode of presentation. Our hypothesis was that
students would show an advantage for discrete patterns because they support direct
inspection of and calculation on instances (Figure 2a). This advantage for exem-
plars (Monk, 1992) is expected to be particularly strong for the youngest students,
who have not had algebra instruction.

As the data show (Figure 4), the hypothesis favoring discrete presentation was
not upheld. In fact, students exhibited an advantage for continuous patterns over-
all, F(1,363) = 21.48, p < 0.001. Specific grade-level tests showed that the advan-
tage for continuous patterns holds for sixth and eighth grade, but not for seventh
grade. For sixth-graders, the advantage translates to a nearly 50% increase in per-
formance (out of 3 total points). In eighth grade, the advantage is nearly 40%.

The continuous pattern presents the linear function in a concise, relational form.
Evidently this is more accessible to students and more supportive of pattern gener-
alization than one that provides students with discrete instances that fit the pattern.
We will next look to the students’ solution strategies to better understand these
results.

As Table 1 shows, students use a variety of strategies to solve the prediction
problems. However, several strategies—particularly AO, ARR, and RG—were

206 NATHAN AND KIM

FIGURE 4 Analysis of cross-sectional data by presentation mode (within subjects, N = 372)
shows a performance advantage for continuous patterns. Differences are significant for sixth-
and eighth-graders. Totals are out of 3 points.
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TABLE 1
Frequency of Strategy Use for Solving NP and FP Tasks in the Cross-Sectional Data (N = 372)

AG ARR RA AO RG ARO MULT LC NR DK O U G NP Total

6th Grade
NP discrete

Correct 4 7 20 1 1 2 35
Incorrect 1 8 30 12 28 3 2 1 1 1 87

FP discrete
Correct 8 2 5 1 1 17
Incorrect 1 3 45 3 8 32 7 2 2 2 105

NP continuous
Correct 9 1 39 3 52
Incorrect 3 5 33 2 2 22 1 2 70

FP continuous
Correct 12 1 11 24
Incorrect 7 3 38 5 6 32 2 2 1 2 98

7th Grade
NP discrete

Correct 3 5 5 34 6 1 1 1 56
Incorrect 2 3 23 5 2 19 4 1 59

FP discrete
Correct 2 12 22 1 37
Incorrect 5 2 26 4 5 30 6 78

NP continuous
Correct 10 1 52 6 69
Incorrect 3 20 20 2 1 46

FP continuous
Correct 12 21 33
Incorrect 10 35 1 5 23 7 1 82

(continued)
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8th Grade
NP discrete

Correct 2 13 25 22 11 2 75
Incorrect 10 10 20 9 5 1 4 1 1 60

FP discrete
Correct 1 25 11 1 38
Incorrect 17 4 36 11 15 11 1 1 1 97

NP continuous
Correct 1 33 3 57 5 99
Incorrect 4 20 2 2 8 36

FP continuous
Correct 38 1 14 1 1 1 56
Incorrect 14 1 31 5 9 18 1 79

Note. AG = Algebraic; ARR = Arithmetic rate; RA = Recursive addition; AO = Answer only; RG = Reading the graph; ARO = Arithmetic other; MULT =
Multiple strategies; LC = Linear combination; NR = no response given (left blank); DK = “Don’t know”; O = Other; U = Unknown; NP = “Not possible.”

TABLE 1 (Continued)

AG ARR RA AO RG ARO MULT LC NR DK O U G NP Total
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more successful when applied to continuous patterns than when used with discrete
patterns. Strategy use was clearly dominated by AO responses. Notably, AO use on
continuous items had a much greater likelihood of success (41%) than discrete pat-
terns (25%). Similarly, we observed greater success with the ARR strategy when
applied to continuous patterns (50%) than discrete patterns (28%).

RG was also more reliable when continuous patterns were presented. Figure 3
shows an important contrast between students’ uses of the graphs to make predic-
tions when in the discrete or continuous modes. Both sides of this figure show
work from the same sixth-grade student. As noted on the left-hand side of the fig-
ure, when the pattern was presented as a point-wise graph, the student used the
value on the X-axis to respond to the NP question (part a), and gave an answer of
10. While this is not correct, it demonstrates how the graph afforded access to this
item. However, when asked to reason about an FP value (part b), the student saw
the graph as fundamentally bounded by its frame (cf., Bieda & Nathan, 2006) and
responded “It dose [sic] not tell.” In contrast, the same student used the continuous
line graph on the right-hand side of the figure to read off the answer to the NP prob-
lem, and attempted to reason about the FP problem (part b). Although the student’s
answer was incorrect, this is not due to a perceived constraint of the graphical
frame.

As noted above, AB items required a different form of response than NP and
FP items—students had to give a proper mathematical expression or equation
that would explain the underlying pattern. While the expression or equation
could contain letters and words, it could not be exclusively in verbal form. It
also had to express a generalized relation and could not simply describe the pro-
cedure for a given instance. This latter point is significant, since one of the most
common errors was to find the value of an instance, rather than a generalized so-
lution. Sixth-graders were, understandably, far more likely to solve for an in-
stance than older students. However, seventh- and eighth-grade students were
more likely to take this approach when they were given a discrete pattern. All of
these strategy differences contributed to the overall advantage for continuous
over discrete patterns.

Representation Differences. As a between-subjects manipulation, stu-
dents solved problems in graphical (n = 125), verbal form (n = 124), or with both
representations combined (n = 123). We first considered differences between
graphical and verbal representations. We expected to observe a verbal advantage,
paralleling previous studies of reasoning with algebra equations. The argument has
been advanced that verbal representations tap into the comprehension processes
students have already developed throughout their early years of learning language,
reading, and interacting socially, and this allows for greater sense-making, more
self-directed error correction, and the opportunity to employ weak methods to

REPRESENTATIONAL FLUENCY 209

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
W
i
s
c
o
n
s
i
n
 
M
a
d
i
s
o
n
]
 
A
t
:
 
0
3
:
1
3
 
7
 
A
p
r
i
l
 
2
0
0
9



invent appropriate and robust solution strategies on the fly (Koedinger, Alibali, &
Nathan, in press; Koedinger & Nathan, 2004).

In the current data set we found the expected verbal advantage. Pattern-
generalization performance across items and grades was higher when those pat-
terns were presented in words as compared to graphs, F(1,243) = 5.55, p < .05.
This replicates prior findings that show an advantage over equations with high
school and college students. However, as Figure 5 suggests, this advantage is not
homogenous, but specific to continuous patterns (Figure 5b). A post-hoc test con-
firms this, t(243) = 2.36, p < .05.

In addition to an overall verbal advantage, there was an advantage for discrete
patterns presented verbally for the youngest students in the study (Figure 5a; F(1,
81) = 4.32, p < .05), suggesting that those with the least mathematics training
made the most from the verbal representations; alternatively, these young students
also had the most difficulty with graphs.

Our design also allowed us to observe whether there was added value for pattern
generalization when graphical and verbal information was combined. This ques-
tion is of interest because students are expected to eventually develop fluency with
words and graphs that would allow them to make use of the synergy provided by
these two, complimentary representations (Case, 1985; 1992; 1996; Kupermintz &
Nathan, 2004). Our results show an overall main effect for representation, with an
advantage for combined representations, F(1,363) = 10.37, p < .05. While the ver-
bal representation (M = 1.11 correct items on average) is superior to graphs (M =
.88), the combined use of graphs and words produced the highest performance
overall (M = 1.34). Individual contrasts show combining graphs and words were
superior to graph and verbal representations alone (p < .05). Thus, the added un-
derstanding available to students by combining words with graphs is particularly
useful for their pattern-generalization reasoning.

210 NATHAN AND KIM

FIGURE 5 In the cross-sectional analysis (N = 372) there is no verbal advantage for items that
present patterns in (a) the discrete mode, but there is in (b) the continuous mode. Totals are out
of 3 points.
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Summary of Cross-Sectional Analyses

Performance naturally followed grade-level differences. We also found the ex-
pected ordering among task difficulty, with NP tasks easier than FP, which were
in turn easier than AB (data reduction and reformulation). This is consistent with
our notions that each level of generalization builds somewhat cumulatively on
the prior one. However, one unexpected finding was that eighth-graders exhib-
ited a transition point in their mathematical development in which their abilities
to abstract from patterns were better than their abilities to make predictions. This
appeared to be somewhat robust because it was evident from the data on both the
discrete and continuous patterns. Another surprising finding was that perfor-
mance on problems with continuous patterns was consistently higher than prob-
lems with discrete presentation of the same underlying functions. Students exe-
cuted the most commonly used strategies (AO, ARR, RG) successfully when
reasoning about the continuous patterns. Consistent with our predictions, there
was a general verbal advantage over graphs. While this advantage was evident
among sixth-graders for both discrete and continuous patterns, we failed to pre-
dict that the advantage only applied to discrete patterns for older students, al-
though it widened considerably by eighth grade. Finally, students who received
combined representations outperformed those given the individual representa-
tions, proving an unexpected synergy even at the earliest grades. Several predic-
tions were overturned, principally, the greater success with continuous patterns,
its apparent relation to the verbal advantage, and early advantages for combined
representations. This provides new information for the emerging developmental
trajectory as we delve into the longitudinal data.

Longitudinal Analyses

In the longitudinal data set (N = 81), we explored how grade-level differences in
assessment performance and strategy use changed over the middle school years
with increasing instruction and mathematical maturity. Our analysis of overall per-
formance (a total of 6 points) across the two presentation modes for the three tasks
(NP, FP, AB), showed students exhibited general improvement, F(3, 240) = 15.55,
p < .01. Specifically, students in the longitudinal cohort showed a reliable gain
from sixth grade (27% correct) to seventh grade (43%) performance, and a signifi-
cant gain during eighth grade from the fall (41.7%) to the spring (50%). However,
students showed no reliable gains or losses in the time between the seventh and
eighth grade fall assessments. Since this is a somewhat puzzling result, a number
of post-hoc analyses were performed on class membership, teacher effects, and
comparisons at different achievement levels to determine whether there were aver-
aging masked performance gains for any subgroup of the cohort, but these all
proved to be insufficient to explain the flat performance changes between the sec-
ond- and the third-test administrations. Still, the picture of student change shows a
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near doubling (87.5% increase) in overall performance in pattern generalization
from the beginning of sixth to the end of eighth grade, with most (over 70%) of the
increase occurring during the transition from sixth to seventh grade.

Presentation Mode. Comparisons between discrete and continuous modes
of pattern presentation showed that, contrary to our initial hypotheses (but consis-
tent with the cross-sectional data) there was a reliable advantage for continuous
patterns in both graphical and verbal representations (line graphs and verbal rules),
F(1,78) = 24.2, p < .01. As shown in Figure 6, the advantage for continuous pattern
was present in the earliest years of this study and persisted throughout the middle
school years, with a significant advantage for continuous patterns found at each of
the four test administrations. As students matured, the advantage for continuous
patterns grew larger.

Representation Differences. Students in the longitudinal cohort were
also asked to reason about patterns that were represented in either graphical (n =
27) or verbal form (n = 28), or with both representations combined (n = 26). As
expected, there was a verbal advantage for this cohort. However, as with the
cross-sectional data, this was due largely to the advantage of verbal representa-
tions over graphs when the patterns were continuous, F(1, 53) = 4.04, p = .05
(see Figure 7b). While no verbal advantage was evident among the discrete pat-
terns overall (Figure 7a), a post-hoc test revealed a verbal advantage for in-
stances during the second test administration (when the cohort was in seventh
grade), F(1, 53) = 13.6, p < .05.

212 NATHAN AND KIM

FIGURE 6 An advantage for continuous patterns is evident in every assessment administra-
tion given to the longitudinal cohort (N = 81) during the three-year study. Totals are out of 3
points.
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In addition, there is an interaction of representation with time (F(3, 159) = 5.1, p <
.05), showing how performance with discrete verbal patterns dropped from seventh to
early eighth grade, although it buoyed back in spring, leading to a three-year gain over-
all. There were no additional interactions with representation, which means that the
nature of the verbal advantage is consistent across the four assessment time points.

Developmental Mapping. For the last analysis, we provide a developmental
mapping intended to give insights into students’ general progression of pattern
generalization capability reflected in the cross-sectional and longitudinal data. Re-
call that students were given the six items either in graphical, verbal, or combined
representations. Consequently, we cannot make direct claims about developmental
transitions between these representations. We rely instead on the between-group
analyses, which suggested that combined representations are most accessible to
students, followed by verbal and graphical representations. While the data show a
reliable advantage of verbal representations over graphical ones, combined
representations show that adding graphical information reliably provided an addi-
tional advantage. Consequently, we use these findings to argue that students will
have the easiest access to combined representations, followed by verbal and graph-
ical representations. This is reflected in changes made to the proposed develop-
mental trajectory (Figure 8), where within each major box (continuous and dis-
crete) performance proceeded from fluency with combined representations to
verbal and then graphs.

Among the repeated measures, we noted that NP tasks were the most accessible
to students, regardless of grade level, representation, or mode of pattern presenta-
tion. Consequently, this appears to be the natural entry point for members of our
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FIGURE 7 Verbal advantage among the longitudinal cohort (N = 81) (a) is not found in the dis-

crete mode (except in Year 2) but (b) evident in the continuous mode. Totals are out of 3 points.
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cohort, as well as students across the middle grades. FP and AB tasks depended
more on students’ pattern-specific reasoning abilities, with continuous patterns
more accessible than discrete patterns. Finally, these understandings come to-
gether and support students in all the test items. These transitions are summarized
in Figure 8. We will explore the implications of this model for research and instruc-
tion in the next section.

DISCUSSION

This study set out to explore middle school students’ initial and developing forms
of pattern generalization, and to propose, and then revise, a hypothetical trajectory
for the development of representational fluency using discrete and continuous pat-
terns presented in graphs and words. Previous theoretical and empirical research in
the development of mathematical reasoning has proposed there is an inherent dual-
ism between discrete and continuous modes that ultimately lead to an integrated
conceptual structure (e.g., Case, 1985; 1992; 1996). Generally, continuous, and es-
pecially verbal continuous, presentations of patterns tend to support more reliable
execution of solution strategies, and later generalization of the algorithms to alge-
braic forms (Carpenter, Franke, & Levi, 2003).

Perceptual processes also appeared to impact students’ reasoning, particularly
with graphs. While this has been documented with graphs (Bieda & Nathan, 2006;
Friel et al., 2001) it is also evident in other mathematical formalisms, such as equa-
tions (e.g., Landy & Goldstone, in press). Although verbal processes obviously
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FIGURE 8 Observed developmental trajectory. (NP = near prediction, FP = far prediction, AB
= abstraction, Combo = combined representation).
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play a significant role in seeing and reading the visual aspects of any representa-
tions, there are also ways that distal, cognitive processes are impacted by the spa-
tial configuration of representations. For example, in their analysis of eye-tracking
protocols, findings by Kim, Kim, & Kim (2001; Kim & Kim, 2002) suggest that
continuous line graphs are more amenable to visual chunking of the data. This ho-
listic quality (e.g., Kupermintz & Nathan, 2004) may facilitate perceptual pro-
cesses involved in pattern analysis and prediction, even for the simplest NP tasks.
Zacks and Tversky (1999) showed college students were more likely to consider
trends when given line graphs, but more likely to make contrasts when shown dis-
crete values (bar graphs) of the same data. Recently, Nathan and Bieda (2006;
Bieda & Nathan, 2006) showed how some middle school students indicated a
“bounded interpretation” of the graphs through gesture and speech, much like the
view expressed in Figure 3a. Bounded gesture use tended to predict students’ abil-
ity to solve FP tasks. In the current study, we found students were more likely to
make accurate generalizations in the AB problems when continuous patterns were
presented (Figure 6), while discrete patterns led students to conceptualize the re-
quests for abstractions as questions about finding an acceptable instance. Students’
reasoning, then, appears to “import” aspects of the working environment and oper-
ate on mental representations as though they had the limits of physical (perceptual)
phenomena. The influence of the spatial features of these representations rein-
forces the body- and perception-based nature of reasoning, as suggested by the
Embodied Cognition community of researchers (e.g., Lakoff & Nunez, 2000; Wil-
son, 2002).

We also found support for the predicted verbal advantage. It is quite possible
that natural language is most easily understood by students, paralleling historical
development (e.g., Kaput, 1992), and that students’ verbal comprehension and
meaning-making processes, once activated, moderate the selection and execution
of solution methods. Verbal representations enjoy a connection to students’ larger
social and cognitive development (Koedinger & Nathan, 2004; Vygotsky, 1985),
and as such, have the potential to play a formative role in the development of one’s
mathematical reasoning, even while transitioning to the use of formal representa-
tions and specialized notation (Gee, 2004).

In previous research (e.g., Nathan et al., 2002), verbal representations of patterns
have shown an advantage over other representational forms in areas of algebraic rea-
soning. The current data replicate this finding, but reveal it to be somewhat restricted
to the continuous mode of presentation. We interpret this to mean the verbal advan-
tage is robust across a wide range of student populations, but is also limited to spe-
cific types of mathematical reasoning tasks. In reviewing prior work on this matter, it
isapparent that thestoryandwordequationproblemsusedwereprimarilyof thecon-
tinuous kind (See, e.g., Koedinger et al., in press; Koedinger & Nathan, 2004). Story
problems present the basic quantitative relations using the structural and episodic
properties of the referent situation. Word equations use concise language to describe
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the quantitative structure relationally or procedurally rather than as a collection of
exemplars. Thus, the present findings do not appear to contradict earlier results
showing a verbal advantage for students in other areas of algebra, but help clarify the
natureof theadvantage.Since this is the first study tospecificallymanipulate thepre-
sentation mode and the representation, it has made a latent factor salient and exposed
the manner in which the verbal advantage operates.

In addition to refining our understanding of the verbal advantage, we found a
surprising relation between FP and AB tasks. A normative view (see Figure 1, as
well as Bertin, 1983; Curcio, 1987; and Friel et al., 2001) assumes that FP is a nec-
essary precursor to articulating an abstract relation. However, for our eighth-
graders, AB appeared to operate independently from predicting instances. This
suggests that there may aspects of the patterns themselves, rather than generaliza-
tions of calculation procedures applied to the patterns, which can directly mediate
the process of abstraction. This suggests that abstraction tasks could be considered
as aims unto themselves rather than as scaffolded exclusively by FPs. The prereq-
uisite, however, seems to be that other, more general mathematical maturity must
be in place for these independent AB processes to be enabled.

IMPLICATIONS FOR MATHEMATICS LEARNING
AND INSTRUCTION

The results reported here provide some new insights about students’ uses of formal
representations when asked to reason about patterns. The findings have implica-
tions for any investigations within the physical and social sciences in which stu-
dents are asked to make predictions and draw generalizations from limited infor-
mation. Specifically, our data suggest that once one moves beyond basic NP tasks
that emphasize reading the data, we can expect continuous patterns to provide
greater support for making predictions and generalizations than was previously
suggested. We also presented evidence that presentation of continuous patterns
serve as natural entry points for algebra learners seeking to represent the quantita-
tive relations in symbolic form. When continuous patterns are presented verbally,
they are especially accessible, enabling younger students to perform many of the
same solution methods more successfully. Success with continuous forms also
tended to lead to more advanced development later on, as those students moved
further along developmental trajectories and succeed on items (such as AB and FP
tasks) that were solved by relatively few students overall.

The findings here enjoy some corroboration (e.g., Kupermintz & Nathan,
2004; Nathan et al., 2002). As such, they contribute important guidelines for de-
signing future curricula and for guiding teachers during lesson planning and as-
sessment design. We believe that, above all, these findings reveal the importance
of adopting a developmental perspective that considers the entry points and areas
of attainment seen among students through the middle school years. This central
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principle can be used to organize many facets of instruction and research into
mathematical reasoning.
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