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INTRODUCTION

A Framework for Understanding and
Cultivating the Transition from
Arithmetic to Algebraic Reasoning

Mitchell J. Nathan

University of Wisconsin-Madison

Karen Koellner
University of Colorado, Denver

As organizers of this special issue and investigators in the Supporting the Transi-
tion from Arithmetic to Algebraic Reasoning (STAAR) project, we both felt we
would be remiss if we did not acknowledge the singular importance of Jim Kaput’s
influence on this body of work. From the earliest meetings of the project team,
Jim’s deep thinking about the nature of algebra and of algebraic reasoning and in-
struction served as a guide. Jim contributed substantially to each of the tiers. But,
more significantly, Jim appreciated the need and challenge to address each of these
areas of algebra education research in a systemic manner. He agreed unflinchingly
when asked to join our advisory board, and the project benefited immensely from
his writings and from various discussions on the work. It is a patent understatement
that his early death is a loss for the mathematics education community in general
and for the community of algebra researchers in particular. Yet we are proud to say
his ideas and contributions will continue in projects such as this. Therefore, it is
only fitting that we dedicate this set of papers to Professor James J. Kaput.
Algebraic reasoning stands as a formidable gatekeeper for students in their ef-
forts to progress in mathematics and science, and to obtain economic opportunities
(Ladson-Billings, 1998; RAND, 2003). Currently, mathematics education re-
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search has focused on algebra in order to provide access and opportunities for
more students. There is now a growing awareness that the essential concepts that
make up school algebra are accessible to students before secondary-level educa-
tion, and that earlier introduction could facilitate students’ algebraic development
(Carpenter, Franke, & Levi, 2003; Kaput, Carraher, & Blanton, 2007; National
Council of Teachers of Mathematics [NCTM], 2000, National Research Council
[NRC], 1998; RAND, 2003). In order to understand middle school students’ tran-
sition from arithmetic to algebraic reasoning, and to develop and evaluate effective
educational approaches to improve the learning and teaching of increasingly com-
plex mathematics, future efforts need to be grounded in sound theory. This theory
needs to encapsulate both how students develop algebraic reasoning and acquire
domain knowledge, and the beliefs, knowledge, and existing practices of teachers.
The theory must also acknowledge the complexity of this area of study, including
its multi-tiered nature, diversity of settings and participants, and the high degree of
interconnectedness among important components. For example, to understand stu-
dents’ algebraic reasoning and development, we need to pay attention to classroom
interactions, student preconceptions, teachers’ beliefs about mathematics and
learning, how teachers’ beliefs and instructional practices shape the learning envi-
ronment, and how teachers themselves learn and change.

In an effort to conduct research along these lines, a team of researchers from the
University of Colorado, University of Wisconsin, and Carnegie Mellon University
developed a framework that guided a recent IERI-funded project,! Supporting the
Transition from Arithmetic to Algebraic Reasoning (STAAR). This framework
outlines a comprehensive, systemic research and development program to address
several inter-related areas, or tiers, that we see as central to this effort—student
learning and development, teacher beliefs, knowledge and practice, and profes-
sional development (cf., Lesh & Kelly, 2000). Figure 1 depicts the integrative ar-
rangement of the three tiers to allow research and development activities to be po-
sitioned within the system. Our approach emphasizes the parallel structures and
processes among these tiers, viewing them as distinct but inseparable aspects of a
unified system.

The authors of the papers in this volume conducted research and development
within this multi-tiered and dynamic framework in an attempt to move beyond
piecemeal, disconnected insights to reach a deeper appreciation of the conceptual
terrain and learning processes to inform instruction, curriculum development and
professional development. The foundation on which this multi-tiered structure op-
erates gives a sense of the domain of algebra as it is learned in schools.

IThe Interagency Education Research Initiative (IERI) is a federal partnership that includes the US
Department of Education-Institute of Education Sciences (IES), the National Institute of Child Health
and Human Development (NICHD), and the National Science Foundation (NSF).
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FIGURE 1 Diagram showing the three distinct but interrelated tiers that form the basis of our
conceptual framework: (1) student learning and development (top); (2) teacher knowledge, be-
liefs, and practices (middle); and (3) teacher professional development.

THE DOMAIN OF ALGEBRA AS
THE LEARNING TERRAIN

James Kaput considered algebra the keystone of mathematics reform because of its
mediating role between arithmetic in the primary grades and calculus and func-
tions in high school and beyond. Kaput’s (1998) framework provides a useful orga-
nization of algebraic activities and skills to guide investigation into core compo-
nents (representations, strategies, and knowledge structures) and processes
(argumentation, modeling, generalization, and problem solving) of algebraic ac-
tivities. Chazan (2000) also notes several concepts that are introduced in algebra:
(a) a relational or structural conception of the equal sign (cf., Kaput’s second as-
pect), which contrasts with the operational conception favored in arithmetic
(Rittle-Johnson & Alibali, 1999); (b) literal symbols as variables that can denote a
set of values (Kaput’s first form), rather than just a single value; and (c) the
trade-offs between symbolic, tabular, graphical, symbolic, and verbal representa-
tional forms (Knuth, 2000). It is within this context and several recent summative
reports (e.g., NRC, 2005; RAND, 2003), that we aligned our research around two
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core concepts—equality and variable; and three major aspects of algebraic reason-
ing—the use of formal representations and representational fluency, pattern gener-
alization and function, and problem solving.

What, then, does it mean to reason algebraically? How can this reasoning be
cultivated in middle school classrooms? To address these questions, we turn to the
theoretical underpinnings, and relevant empirical findings within each of the three
tiers.

TIER 1: STUDENT ALGEBRAIC REASONING

There is a growing recognition that “[e]ffective instruction begins with what learn-
ers bring to the setting” (Bransford, Brown, & Cocking, 1999, p. xvi). Students
contribute powerful general and mathematics-specific ideas, knowledge, and skills
to the classroom environment (Carpenter, Franke, & Levi, 2003). These nascent
forms of mathematical reasoning are ingrained in internal mental representations
and dispositions, but also in socially determined patterns of participation, within
and outside school. Prior knowledge and conceptions, both formal and informal,
also play an important role in student performance and later development. If we are
to identify inroads into students’ learning and understand obstacles to develop-
ment, we must understand students’ prior knowledge.

Students may choose not to use formal approaches in reasoning about mathe-
matical problems even when they know them (Koedinger & Nathan, 2004). Stu-
dents also miss fruitful connections. For example, Knuth (2000) showed that
advanced high school algebra students do not readily connect graphical represen-
tations such as the Cartesian coordinate system to their knowledge of equations,
and fail to use graphs even when graphical solutions are easier and more efficient.
Yet young students do exhibit algebraic reasoning, even before instruction (Car-
penter et al., 2003). Nathan and Koedinger (2000a) showed that algebraic symbol-
isms could be introduced in sixth-grade classes as natural generalizations of stu-
dents’ invented strategies. Swafford and Langrall (2000) found that sixth-graders
could use algebraic equations to describe and represent generalizable problem sit-
uations even prior to formal instruction, but they rarely used equations to solve re-
lated problems.

Studies by Koedinger, Nathan, and Alibali (in press; Koedinger & Nathan,
2004; Nathan & Koedinger, 2000b) showed that students performed better on ver-
bally presented story and word-equation problems than on matched symbolic
equations. Verbal problems were also more likely to elicit invented strategies such
as “guess-and-test” and “unwind” (a working backwards strategy; Kieran, 1988;
Nathan & Koedinger, 2000b). Further, these invented strategies were more effec-
tive than formal approaches—even for students who had completed over a year of
formal algebra instruction. Verbal representations appear to mediate the genera-
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tion of successful strategies by allowing students to carry out quantitative reason-
ing in a familiar verbal problem form. Further analyses of high school students’
problem-solving performances (Nathan & Koedinger, 2000b) suggest that stu-
dents tend to follow a verbal precedence model, in which verbal reasoning about
quantitative relations precedes symbolic reasoning (see also Case & Okamoto,
1996; Kalchman & Case, 1998).

However, verbal strategies are not sufficient to replace symbolic approaches
throughout students’ mathematical experiences. As problem complexity increases
(i.e., from simple two-step relations, to relations in which the unknown occurs
twice, or from linear to nonlinear relations), an advantage of symbolic representa-
tions arises, surpassing the effectiveness of verbal representations (Koedinger,
Alibali, & Nathan, in press; Nathan, Stephens, Masarik, Alibali, & Koedinger,
2002). Formal symbolic representations such as equations or graphs appear to
“scale up” far better than verbally based solution methods as complexity increases.
However, little is known about this developmental transition or the conditions that
facilitate or hamper it.

Typically, symbolic reasoning is seen as the by-product of more general
maturational processes (e.g., Santrock, 2001). Our take differs substantially from
this hypothesis. We do not conceive the development of abstract mathematical rea-
soning as a natural process with a predetermined outcome. Instead, we argue that
the ability to comprehend and use formal representations and methods is the result
of carefully engineered learning experiences that connect to students’ prior con-
ceptions to invoke conceptual, procedural, and meta-cognitive knowledge in con-
structive and opportune ways.

TIER 2: MIDDLE SCHOOL ALGEBRA TEACHING
PRACTICES

Research at the elementary grades suggests that instruction is more effective when
teachers are familiar with students’ preconceptions (Carpenter et al., 1996; Cai,
1998; Stacey & MacGregor, 1997). Teachers with a “cognitively based perspec-
tive” think that children construct their own mathematical knowledge—that skills
are best taught within problem-solving contexts, and that instruction should be
developmentally informed and organized to facilitate students’ construction of
knowledge (Peterson, Carpenter, & Fennema, 1989).

However, many teachers of mathematics reveal different views. Recent evi-
dence suggests that both practicing and in-service teachers with advanced mathe-
matics knowledge systematically misjudge the range and efficacy of students’ in-
formal solution strategies for algebra, and tend to assume students have
proficiency with formally taught symbolic reasoning and solution methods (Na-
than & Koedinger, 2000c; Nathan & Petrosino, 2003).
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The study of teacher knowledge, beliefs, and practices is crucial to understand-
ing and improving pedagogy and classroom experiences (Hashweh, 1996; Nespor,
1987). Research within this domain demonstrates that teachers’ beliefs and knowl-
edge are deeply rooted and often resistant to change (see, e.g., Brown, Cooney, &
Jones, 1990; Manouchehri, 1997; Thompson, 1992).

We must also consider the potential impact of curricular innovation and reform
on middle school algebra teaching and learning. A growing number of school dis-
tricts are adopting reform-based curriculum programs such as those supported by
NSF and NCTM (e.g., Connected Mathematics and Mathematics in Context). Al-
though positive anecdotes abound, empirical studies have only begun to explore
the dynamics of curricular reform, its impact on teaching practice and student
achievement, and its interaction with teachers’ knowledge and beliefs (Fuson,
Carroll, & Drueck, 2000; Huntley, Rasmussen, Villarubi, Sangtong, & Fey, 2000).
Borrowing from the work of Nancy Atwell (1991), Villaume (2000) noted the “zer-
rible freedom that some teachers experience as they realize they are being asked to
stop teaching programs and start teaching based on what children are thinking and
doing” (p. 21). This is particularly true within the algebra domain, as transitions
from conceptual to abstract understanding are regularly the desired outcome of
learning.

TIER 3: RESEARCH ON TEACHER LEARNING
AND TEACHER CHANGE

Middle school mathematics teachers often have little post-secondary mathematics
training. As schools push for more complex mathematics in earlier grades, the dis-
parities between the needs of students and the training of teachers become greater.
We conceptualize teacher change as more than just adopting new practices.
Ideally, change should engender continued professional growth that is self-
sustaining and generates knowledge and reflection (Franke, Carpenter, Levi, &
Fennema, 2001). Our goal for teacher professional development (TPD) is consis-
tent with those of other researchers (e.g., Darling-Hammond & Ball, 1997;
Lieberman, 1996; Loucks-Horsley, Hewson, Love, & Stiles, 1998; Putnam &
Borko, 2000). One successful effort in mathematics is Cognitively-Guided In-
struction (CGI) (Carpenter, Fennema, & Franke, 1996; Wilson & Berne, 1999).
Excellent examples of such approaches are found within federally funded design
experiments, in which teachers and researchers work closely together in class-
rooms (Bereiter, 2002).

While some research suggests that the mere introduction of new curricula can
serve as a change lever, we hypothesize that meaningful teacher change results
from a complex and sustained series of interactions that provide ample opportuni-
ties for experimentation, reflection, and intensive engagement in a professional
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community (Putnam & Borko, 2000). Hence, effective and lasting teacher change
requires structured professional development programs to support implementation
efforts. This calls for systematic and tight coordination between curriculum inno-
vation, student reasoning, and TPD opportunities.

A drawback to such models, however, is that they are extremely resource-
intensive and do not persist on a large scale when major funding is absent (Bereiter,
2002). In response to a pressing need for affordable and viable alternatives to
large-scale implementation, many researchers, developers, educational institu-
tions, funding agencies, and businesses are turning to a model of TPD that com-
bines facilitated video case instruction (VCI) with online support for teachers. In
VI, teachers learn through group study and analysis of video cases that are often
presented as stories of exemplary classroom lessons and examples of student
learning and performance. This approach has been implemented in an online learn-
ing environment called eSTEP (Derry, 2006; Derry, Seymour, Steinkuehler, Lee,
& Siegel, 2004; Derry, Siegel, Stampen, & the STEP Research Group, 2002) and
TPD program of courses (Wortham, Wilsman, Derry, & Woods, 2004). Opportu-
nities for teachers to view and discuss cases of classroom practice can improve in-
struction (e.g., Merseth, 1996; Shulman, 1992), serve as a vehicle for dissemina-
tion of reformed practice, and offer visions of what is possible (Shulman, 1992).
Results from the Trends in International Mathematics and Science Study (TIMSS)
Video Studies (Stigler & Hiebert, 1999), coupled with the release of videotapes of
eighth-grade mathematics and science lessons from several countries, has helped
popularize the use of video cases of classroom practice as a basis for TPD in math-
ematics and science.

In addition, there are compelling empirical and theoretical arguments for struc-
turing TPD around video from teachers’ classrooms. Using video from their own
classrooms situates the exploration of teaching and learning in a more familiar, and
potentially more motivating, environment than does using video from unknown
teachers’ classrooms (Seidel et al., 2005). As LeFevre (2004) pointed out, video
makes teachers’ classrooms accessible in a way that other media simply cannot,
and therefore has the potential to be a powerful catalyst for change and improve-
ment. Professional development leaders can select video excerpts to address par-
ticular features of teaching and learning that they want to examine, and the video
can be stopped, replayed, or otherwise manipulated to focus conversations on
those features.

SYNERGY AMONG TIERS

Our intention is to provide a coherent chain of reasoning from theory, to research
questions, to data, to analysis, to evidence, and back to theory. As was initially con-
ceptualized, elements of one thread would be developed to a sufficient degree that
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they could serve as inputs, constraints, and generative design guidelines to other
inter-related tiers. Similarly, development challenges and successes could elicit re-
search activities in connected tiers. Figure 2 illustrates the dynamics of how re-
search and development from various tiers contributes information to and elicits
information from other interdependent areas. Research on student performance as-
sessment contributes to professional development design which then feeds into
(and is informed by) our emerging models of the nature and relation of teacher
knowledge and beliefs. Advances in understanding teacher knowledge provide in-
sights in instructional practice and teacher change that influence student reasoning
and learning, which can be documented in student assessments.

One of the strengths of our framework (Figure 1) is that all threads of research
and development are highly interdependent. This interdependence is also one of
the greatest challenges of conducting this kind of work. Two significant challenges
of this approach that we encountered were time and communication. With regard
to time, results often could not be produced and digested quickly enough by
tier-specific teams to be sufficiently developed for a “down stream” need by an-
other investigative team. Cross-tier communication also proved to be difficult, as

Chain of Reasoning: General

Student algebra
performance &

TPD Content,
activities, resources,
community

Student
reasoning &
change

Tr Knowledge: CK,
PCK, beliefs,

awareness of S and
tasks & change

Tr practice and
class discourse
& change

FIGURE 2 Diagram showing the dynamics of how research and development from various
tiers contributes information to and elicits information from other interdependent areas. From
the top, clockwise: Research on student assessment performance contributes to professional de-
velopment design that then feeds into (and is informed by) our emerging models of the nature
and relation of teacher knowledge and beliefs. Advances in understanding teacher knowledge
provide insights into instructional practice and teacher change that influence student reasoning
and learning, which can be documented in student assessments.
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the various research teams strove to share ideas across research traditions, vocabu-
lary, methodological approaches, and philosophical underpinnings. Even well-
understood phenomena such as the verbal advantage reviewed above had to be re-
cast from cognitive terms to sociocultural and practitioner terms so that they could
be appropriately incorporated into future professional development program de-
signs.

Our efforts to foster synergy among tiers included:

e Tier 1: Monthly cross-campus meetings on “What is Algebra?”’, with a
three-day meeting at the University of Wisconsin (Dec. 2001).

¢ Cross-tier annual meetings hosted by the University of Colorado.

e Tier 3: Two TPD meetings hosted by the University of Wisconsin (Dec.
2002) on video case-based reasoning and electronic learning environments
for TPD, eSTEP, and Socio-Technical Environments for Learning and
Learning Activity Research (STELLAR).

¢ Cross-tier/cross-campus monthly phone meetings.

While time and communication pose substantial obstacles, research efforts
such as this can produce a large amount of new information about the nature of stu-
dent thinking, instruction, and teacher change. The articles that follow each take up
significant research questions within this multi-tiered framework and make strides
to provide a systemic picture for implementing a program designed to understand
and cultivate students’ transition from arithmetic to algebraic reasoning during the
middle school years.

Contributions to This Issue

Working off of the grounding provided henceforth, this special issue provides re-
sults from each of the three tiers of the STAAR project. Tier 1 papers move forward
with the previously mentioned hypothesis—that the ability to comprehend and use
formal algebraic representations and methods is the result of carefully engineered
learning experiences that connect with students’ prior conceptions to invoke con-
ceptual, procedural, and meta-cognitive knowledge in opportune ways. The two
articles presented here further examine the manner in which students gain concep-
tual and procedural fluency in algebraic reasoning and add to the body of literature
of developmental landmarks that prove important in students’ understanding of
algebra.

The contribution by Alibali, Knuth, Hattikudur, McNeil, & Stephens examines
students’ understanding of the equal sign, and specifically, the ways in which stu-
dents solve equivalent equations problems and then develop more sophisticated
reasoning over time. Results indicate that a more sophisticated understanding of
the equal sign is associated with better performance on equivalent equations prob-
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lems. Although student trajectories of equal sign understanding varied, perfor-
mance on equivalent equation problems was related to when students’ acquired a
more sophisticated level of understanding of the equal sign. Interestingly, those
who acquired a relational understanding earlier were more successful at solving
the equivalent equation problems at the end of grade 8. These findings provide fur-
ther insight into the learning experiences that students need in terms of gaining a
solid understanding of the equal sign. In particular, this article underscores the fact
that elementary and middle school teachers need to support a foundational under-
standing of equivalence from a young age.

Equivalence is just one facet of algebraic knowledge that is central to middle
school students. Nathan and Kim’s article examines representational fluency and
the strategies students implement when they demonstrate conceptual, procedural,
and meta-cognitive understandings of pattern generalization. The authors analyze
middle school students’ performance and strategy use to determine how students
solve pattern generalization problems and which strategies contributed to success-
ful solutions. Most notable was their finding that students show greater success
with patterns presented in a continuous format, such as line graphs and verbal
rules, compared to problems presented as a collection of discrete instances, such as
a piece-wise graph. In addition, Nathan and Kim’s research indicates that students
perform better on pattern generalization tasks when words and graphs are com-
bined. These findings contribute to our understanding of the ways in which stu-
dents are able to move among and between representations and, combined with
previous research, provide an emerging developmental model of representational
fluency.

The Tier 2 article included in this issue focuses on teachers’ knowledge of stu-
dents’ understanding of algebraic concepts, specifically students’ understanding
and use of the equal sign and variable (Asquith, Stephens, Knuth, & Alibali). This
article is directly aligned with Tier 1 results and illustrates the unique connections
within this project using the multi-tier framework. Specifically, in this study, mid-
dle school teachers predicted student responses to written assessment items focus-
ing on the equal sign and variable. Teachers’ predictions of students’ understand-
ing of the variable were aligned to a large extent with students’ actual responses to
corresponding items. On the other hand, teachers’ predictions of students’ under-
standing of the equal sign did not correspond well with actual student responses.
These findings indicate a need for professional development with teachers to sup-
port students’ conceptual development of the equal sign and, to a lesser extent,
variable.

The Tier 3 articles draw on the work of the previous tiers in developing novel
professional development programs. One of the major long-term aims of our re-
search is to assist a large number of teachers to acquire a deeper understanding of
algebra, algebraic reasoning, and new practices in the teaching of algebra. Thus, an
important component of our work was to design, implement, and evaluate proto-
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type “proof-of-concept” programs of teacher professional development within a
sample of Colorado and Wisconsin schools. Two professional development pro-
grams were implemented at two different sites: Madison, Wisconsin and Boulder,
Colorado. These programs were designed to help in-service teachers support stu-
dent development of algebraic reasoning.

The first Tier 3 article describes a professional development model, the Prob-
lem-Solving Cycle (PSC), that evolved with a group of teachers over a two-year
period to support the development of content and pedagogical content knowledge
in the area of algebra (Koellner, Jacobs, Borko, Schneider, Pittman, Eiteljorg,
Bunning, & Frykholm). The PSC model consists of three interrelated professional
development workshops. The first workshop concentrates on fostering teachers’
content knowledge related to a specific task that they will then implement in their
classrooms. The second and third workshops focus on the role of the teacher and
students’ algebraic thinking and rely heavily on video clips from the teachers’
lessons.

The next article describes the use of contrasting cases to teach a university
course focused on helping teachers to support their students’ transition from arith-
metic to algebraic reasoning (Derry, Wilsman, & Hackbarth). The researchers de-
signed contrasting-case instructional activities that encouraged teachers to inter-
pret and compare multiple representations and solutions of mathematical tasks in
both their own work and the work of their students. Both of these professional de-
velopment projects employed a unique structure to support teacher development in
the area of content knowledge and pedagogical content knowledge. In addition,
both projects built on research findings from Tiers 1 and 2 including, but not lim-
ited to, a more nuanced understanding of students’ and teachers’ knowledge about
(a) the equal sign, (b) representational fluency, and (c) patterns and functions.
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