
ORIGINAL ARTICLE

Representational disfluency in algebra: evidence from student
gestures and speech

Kristen N. Bieda Æ Mitchell J. Nathan

Accepted: 5 July 2009

� FIZ Karlsruhe 2009

Abstract In this investigation, we analyzed US middle

school students’ (grades 6–8) gestures and speech during

interviews to understand students’ reasoning while inter-

preting quantitative patterns represented by Cartesian

graphs. We studied students’ representational fluency,

defined as their abilities to work within and translate

among representations. While students translated across

representations to address task demands, they also trans-

lated to a different representation when reaching an

impasse, where the initial representation could not be used

to answer a task. During these impasse events, which we

call representational disfluencies, three categories of

behavior were observed. Some students perceived the

graph to be bounded by its physical and numerical limits,

and these students were categorized as physically groun-

ded. A second, related, disfluency was categorized as

spatially grounded. Students who were classified as spa-

tially grounded exhibited a bounded view of the graph that

limited their ability to make far predictions until they

physically altered the spatial configuration of the graph by

rescaling or extending the axes. Finally, students who

recovered from one or more of these disfluencies by

translating the quantitative information to alternative but

equivalent representations (i.e., exhibiting representational

fluency), while retaining the connection back to the linear

pattern as graphed, were categorized as interpretatively

grounded. Understanding the causes and varieties of rep-

resentational fluency and disfluency contributes directly to

our understanding of mathematics knowledge, learning and

adaptive forms of reasoning. These findings also provide

implications for mathematics instruction and assessment.

1 Introduction

Representational fluency, the ability to work within and

translate among representations, is central to the enterprise

of mathematical activity and knowledge construction. In

this investigation, we analyzed students’ gestures in rela-

tion to their speech, writing, and drawing during interviews

to understand the reasoning processes and strategies chil-

dren use while interpreting Cartesian graphs of quantitative

patterns. In framing our research, we draw on prior work

on reasoning with graphs, as well as the role of represen-

tational fluency more generally in shaping students’ rea-

soning processes. Central to our approach is how children

assign meaning to formal, mathematical representations—

how they attempt to ground them in terms of actions on

these representations and with reference to other mathe-

matical formalisms. When analyzing students’ responses to

pattern generalization tasks involving Cartesian graphs, we

found students exhibiting representational disfluencies,

events where perceived shortcomings in using representa-

tions to solve problems motivate students to modify or

translate among representations. Close analyses of stu-

dents’ speech, gestures, and writing revealed several new

insights into the ways mathematical representations are

perceived and interpreted by students, namely how boun-

ded students are to the physical limits of a given graph and

how such boundedness suggests ways that students ground

their understanding of the task demands in a given
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representation. These insights have direct implications for

theories of the nature of mathematical reasoning with for-

mal representations, as well as for the role that careful

observations of students can play for informing instruction.

1.1 Gesture research

The spontaneous hand gestures that a child produces during

problem solving often reveal the way the child represents

the task (Goldin-Meadow, 2003). In particular, students’

gestures, combined with their words, serve as semiotic

ways that students construct meaning of the representations

they encounter, as mediated by students’ knowledge and

perceptual processing (Radford, 2009). Roth (2001)

reviewed evidence that gestures reveal implicit or emergent

knowledge that may be expressed in speech only at some

later point (Church & Goldin-Meadow, 1986; Crowder,

1996). During explanations of problem solving, attending

to one’s gestures ‘‘can be used to make inferences about

precisely which features of the complex perceptual field …
should be attended to’’ (Goodwin, 1994, p. 614).

The relationship between speech and gesture is signifi-

cant. McNeill (1992) argued that gesture and speech con-

stitute two components of ‘‘a single underlying mental

process’’ (p. 1) that mediates language production, even

though gestures do not necessarily reveal identical infor-

mation. By tracking gestures, one can learn not only what

someone is thinking about, but also the manner in which a

speaker conveys those thoughts. It is in the sense that

gestures provide ‘‘the imagery of language’’ (McNeill,

1992, p. 1). Gestures can also reveal how a speaker orients

to and incorporates objects (both physical and symbolic)

from her immediate environment into her discourse.

1.2 Grounding

One of the challenges of learning and using mathematical

representations is grasping their meaning by recognizing or

forging associations between them and other representa-

tions, or connecting them to objects and events in the world

(e.g., Pape & Tschoshanov, 2001). Grounding is commonly

used to describe the mapping that a person makes between

an unfamiliar or abstract representation, and a more con-

crete or familiar referent (Glenberg, De Vega & Graesser,

2008; Nathan, 2008). Grounding, as a process, facilitates

meaning making for something that would otherwise be

taken as abstract and non-denotative (e.g., Glenberg &

Robertson, 1999; Harnad, 1990; Lakoff & Nunez, 2000).

Grounded representations are desirable because, once

imbued with meaning, they depict relations in a succinct

way and potentially support the discovery of new relations.

Empirical work has shown grounding to be quite robust

for enhancing students’ understanding of mathematical

principles, procedures, and representations, leading to

learning gains in areas ranging from basic number and

early arithmetic (Griffin, Case & Siegler, 1994), fractions

(Saxe, Taylor, McIntosh & Gearhart, 2005), arithmetic and

algebra story problem solving (Glenberg, Jaworski,

Rischall, & Levin, 2009; Nathan, Kintsch & Young, 1992),

and complex adaptive systems (Goldstone & Son, 2005).

While grounding mathematical representations is a

highly desirable aim of instruction, there also appear to be

downsides. De Bock and colleagues (2003) showed that

authentic contexts and self-generated representations—

both highly grounded representations for learners—had a

negative effect on students’ performance in high school

geometry problems. Concrete exemplars of a concept also

convey superficial information that may distract learners

from the underlying mathematical structure, helping with

initial learning, but limiting its subsequent transfer

(Kaminski, Sloutsky & Heckler, 2008) unless concreteness

was reduced over time in favor of greater abstraction

(Goldstone & Son, 2005).

Negative effects of grounding have also been shown

specifically with Cartesian graphs. When graphs are seen as

grounded representations for the student, their shape can be

interpreted as depicting the physical movement of the

phenomenon being represented rather than as covariation

among measured quantities (Clement, 1985; Smith, di-

Sessa, & Roschelle, 1993). Some of the negative effects of

grounding to Cartesian graphs, particularly for novices,

may be attributed to their nature as an external represen-

tation (Zhang & Norman, 1994) where ‘‘the information …
can be picked up, analyzed, and processed by perceptual

systems alone.’’ (Zhang, 1997, p. 180). Thus, it appears

that one’s perceptions and reasoning processes can be

inappropriately bound to the representations they are

grounded to, which can impose superfluous or incorrect

constraints on the representations themselves and the

strategies that draw upon them, thereby negatively affect-

ing problem-solving performance or transfer.

1.3 Prior work on reasoning with Cartesian graphs

The Cartesian graph is the rectangular coordinate system

depicted by all of the points specified in a plane by the

orthogonal relations of the x- and y-axes (see Fig. 1 for an

example, where the x-axis shows the Number of Copies

Made, and the y-axis shows the Cost in Dollars). A review

of children’s experiences with these graphs shows many

areas of confusion, including an over-reliance on a literal

or iconic interpretation (Clement, 1985; Smith, et al..

1993), correlating height and slope (Leinhardt, Zaslavsky,

& Stein, 1990), and arbitrarily switching between inde-

pendent (x) and dependent (y) variables (Beichner, 1994).

An anthropological perspective (Roth et al., 1999) shows
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that Cartesian graphs are not readily interpretable by nov-

ices if they are not enculturated into graphing practices.

Graphing practices in school generally fall into one of

three dominant types. In the primary grades, instructional

emphasis is placed on ‘‘reading data’’ directly from a graph

(Curcio, 1987). Subsequent tasks direct students to ‘‘read

between the data’’ and draw inferences. In later grades, the

emphasis is put on ‘‘reading beyond the data’’ (Curcio,

1987) and abstraction or modeling, where quantitative

patterns in the data are captured by concise equations or

rules (Bertin, 1983, in Friel, Curcio, and Bright, 2001).

Nathan and Kim (2007) recently showed empirical support

for this developmental sequence.

One aspect of graphs that may distinguish them from

other representations is the salience of their spatial and

visual properties. Pinker’s (1990) model provides a ‘‘bot-

tom up’’ account of how people’s conceptual reasoning

about the quantitative patterns represented by graphs can

be bounded by its visual qualities. The tight relation

between these perceptual and the conceptual processes is

consistent with work by others who have examined

graphical reasoning from the perspective of embodied

cognition (e.g., Gerofsky, 2007; Lakoff & Nunez, 2000;

Tversky, 2001). From a sociocultural perspective, Radford

(2009) also shows the influences the graph itself has on

students’ thinking and interpretations. Radford argues that

students’ sense making of Cartesian graphs entails objec-

tification of the mathematical relationships depicted by

culturally and historically constituted signs with particular

forms of thinking. Gesture and coordinated speech, along

with actions, tone and other modalities, captures the stu-

dents’ interpretation through an integrative iconic

exhibition.

2 Research question

The influences of the perceptual and spatial qualities of

graphical representations on students’ mathematical rea-

soning and actions are central to this investigation. We

explore how students’ problem-solving strategies, as

revealed by their gestures, speech and writing, help us

understand students’ perceptions and interpretations of

graphs. In framing this question, we explore the ways that

representations both foster meaning making (i.e., ground)

and inhibit (i.e., bound) reasoning. Our work was moti-

vated by a particular desire to understand how students use

Cartesian graphs when reasoning about pattern general-

ization tasks. Thus, in this paper, we investigate in-depth

how middle school students using graphical representations

talk about and perform on a set of pattern generalization

tasks. Specifically, our inquiry is guided by the following

research question:

How do students’ levels of representational fluency

and disfluency as revealed in speech and gesture

affect their problem-solving processes when gener-

alizing and making predictions from patterns of data

presented in Cartesian graphs?

In the analyses that follow, we relate students’ problem-

solving processes with our coded accounts of the students’

pattern generalization strategies as manifest in their speech

and gestures. This analysis leads us to recognize that co-

occurrences of the uses of certain strategies signal partic-

ular representational fluencies and disfluencies that have

theoretical importance for distinguishing among students,

and that these fluencies and disfluencies imply very dif-

ferent interpretations of graphs that call for different ped-

agogical responses. We present three student cases to

illustrate the different forms of representational fluency and

disfluency that we believe to be representative of the

varieties of student thinking with graphs present in our

data.

3 Methods

3.1 Participants, materials, and procedures

Thirty-eight US students in sixth (n = 13), seventh

(n = 15), and eighth (n = 10) grades participated in one-

on-one, videotaped interviews with a researcher. Thirteen

of the 38 students were from a large, urban middle school

with a high percentage of non-Caucasian students (91.7%)

and students who were eligible for the national free/

reduced lunch program (86%). The other 25 students were

from a mid-size, urban middle school, also with a high

percentage of non-Caucasian students (86%) and students

a) Describe this picture.
b) Describe how the points in the picture relate to one another. 
c) Find the cost to make 6 copies of a CD. 
d) Find the cost to make 10 copies of a CD. 
e) Find the cost to make 31 copies of a CD. 

Fig. 1 Task used in the interview protocol
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who were eligible for free/reduced lunch (79.1%). All

students were enrolled in at least grade-appropriate math-

ematics classes, with both of the schools utilizing the

NCTM Standards-based Connected Mathematics Project

curriculum (Lappan et al., 1998) at each grade level. In this

study, we focus on students’ responses to a task that

assessed their abilities to extrapolate from a linear pattern

presented on a Cartesian coordinate graph.

As shown in Fig. 1, parts (a) and (b) of the task pro-

vided a baseline assessment of students’ abilities to iden-

tify a Cartesian graph in a general way and interpret the

meaning of the information presented. Part (c) assessed

students’ basic representational fluency with reading a

point on a graph. Both parts (d) and (e) were far predic-

tion (FP) tasks, because they asked students to come up

with a value that exceeded the pattern as it was graphically

presented. The answer for part (d) corresponded to a y-

value of 31, a value beyond the numerical limit of the y-

axis as drawn. Both coordinate values for part (e) (x = 31

and y = 94) were beyond the numerical limits of the x-

and y-axes as drawn.

Students were interviewed individually in the students’

regular school during the school day. Before viewing

the items, students were instructed to ‘‘think aloud’’

throughout the interview—to say as much as they could

about their thinking as they solved the problems. When

students were quiet for long periods (greater than several

seconds), they were reminded by the interviewer to

‘‘think aloud.’’ If a student’s response consisted solely of

an answer, the interviewer asked the student to explain

how he or she arrived at the answer. Students were

allowed to use the ruler and calculator provided, but were

asked to describe aloud their measurements and

calculations.

3.2 Coding

Transana, a software package for analyzing video data

(Woods and Fassnacht, 2007), was used to create and code

the video transcripts. Coding was completed over multiple

passes through the transcripts (cf. McNeill and Duncan,

N.D.); first, by segmenting the transcript into short utter-

ances determined by changes in speaker or linguistic cues,

indicating change in thought or purpose, and by annotating

pauses, breaths and any other non-speech sounds; second,

by signifying each gesture; third, by annotating each ges-

ture; fourth, by coding the speech and gestures analytically

(see below), rather than descriptively; and finally, by

revising codes as the data revealed more information about

the speech and gesture production.

For part (a), which asked to describe the picture shown,

student responses were coded as: (1) Graph, for responses

indicating that the picture showed a graph; (2) Features, for

responses that read the graph’s title and/or axis labels as

description of the picture; and (3) Interpretations, for

responses that interpreted the information presented in the

graph as a description, such as ‘‘The picture shows that you

can make 6 copies of a CD for $19.’’ Part (b) responses

were coded into categories based on the type of relation-

ship between the plotted points, such as: (1) covariate, for

responses that described a dependent relationship between

the x- and y-values; (2) x-axis or y-axis, for responses

which described only the change occurring in the x- or y-

values, respectively; and (3) no relationship, for responses

that explicitly indicated there was no relationship between

the plotted points. For part (c), students’ responses were

coded as correct or incorrect to provide baseline informa-

tion on fluency in reading Cartesian graphs. Because the

given x-value and its corresponding y-value were both

visible, most students answered this item using direct

inspection.

For parts (d) and (e), the far prediction tasks, students’

responses were scored as correct/incorrect, and coded for

their solution strategies (below), while gestures were coded

for boundedness (see below). While all five parts of the

interview reveal aspects of students’ reasoning with graphs,

the analyses presented below focus primarily on parts (d)

and (e) because these were the only tasks that invited

extensions beyond the patterns as presented, and gave us a

look at the nature and influences of students’ bounded and

unbounded views.

3.2.1 Strategy codes

The set of strategy codes used in this study were produced

using both top–down and bottom–up methods, and so do

not represent all of the possible correct and incorrect

strategies that could be employed to solve the tasks in

parts (d) and (e). The complete list, along with examples,

the relation of each to our notion of representational flu-

ency, and their frequencies of occurrence in the data can

be found in Appendix A. The Arithmetic code, with sub-

codes Recursive Arithmetic, Linear (the expected response

to the question), and Linear Combination, were obtained

from a review of the literature on strategies used to solve

algebraic problems (e.g., Lannin, Barker & Townsend,

2006, Nathan & Kim, 2007). Additional codes, namely

Pragmatic, Spatial Estimation, Graph Enlargement, were

developed using the constant comparative method (Glaser,

1978) of analyzing the speech and gestures in the

transcripts.

3.2.2 Codes for boundedness

Students’ responses on the FP tasks revealed two distinct

gesture patterns. Students sometimes used their hands to
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indicate that their interpretations of the graph was inher-

ently limited by its physical and numerical boundaries;

that is, to the student, the information provided within the

graph was limited to what was displayed within the grid,

bounded by the least and greatest x- and y-values shown.

Gestures that remained within the physical boundaries of

the given Cartesian grid were coded as In Bounds or On

Bounds, and used as potential evidence of a bounded

view. In contrast, an alternative code was assigned when

gestures did not indicate any physical or numerical

restriction on the data presented in the Cartesian graph.

These gestures may have referred to values that were

beyond the numerical limits of the x- and y-axes, and

exhibited movements that extended beyond the physical

limits of the gridlines. Any gesturing that students pro-

duced while either solving or explaining their solution to

the FP task that referred explicitly to space beyond the

physical limits of the Cartesian graph (i.e., Outside

Bounds) was considered as evidence that a student had an

unbounded view of the graph.

If students supported their verbal explanations or their

work with gestures that were both bounded and unbounded

in nature, the overall classification of their gestured

responses was coded as unbounded. It was also the case

that a student’s gestures may have been coded as bounded

even though they may have an unbounded view; many

studies in other areas have shown that children indicate one

view with gestures and a different one with words (e.g.,

Alibali & Goldin-Meadow, 1993; Church & Goldin-Mea-

dow, 1986; Roth, 2001). We accounted for this possibility

when constructing our categorizations of grounding to the

graph presented in Table 2.

3.2.3 Categorizations of grounding to the graph

Analysis of the transcribed and gesture-annotated data

aimed to establish whether students indicated that the

pattern provided in the graph was bounded within the

graph’s axes, and whether there was a pattern in the

strategies students used to solve both the simpler and

more complex FP tasks. From these general patterns of

strategy use and gesture production, we sought to

understand more about the students who exhibited two

kinds of representational disfluencies. One form of disfl-

uency occurred when students who were bounded to a

given representation did not alter or translate the given

representation. We label students demonstrating this dis-

fluency as physically grounded, because they used the

graphs and the information presented within them in ways

that suggested the graph was fundamentally limited and

immutable, as though it were an invariant physical object

that can only be read from and referred to. A second form

of disfluency was observed when students who showed

evidence of a bounded view as determined by their ges-

tures, physically altered the graph using rescaling and

extending, but did not translate the information presented

in the graph to any type of generalized symbol structure

such as the number line, a rule, or an equation. Students

demonstrating the second kind of representational disflu-

ency employed a form of unbounded gesturing when

adapting the graph, but their gestures subsequently

remained within the spatial bounds of the newly altered

graph—thus exhibiting a hybrid form of bounded and

unbounded gesturing, which we refer to as spatially

grounded.

A third group of students demonstrated a different kind

of fluency with the graphical representation that supported

unbounded reasoning. They saw the graph as a portrayal

of some pattern that could be reinterpreted through

translation to generalized numerical structures such as

arithmetic or algebraic formalisms, but that still main-

tained its connection back to the original graphical

pattern. We refer to these students as interpretatively

grounded. Consequently, we argue that when considering

both students’ gestures and problem solving strategies, the

ways in which students use Cartesian graphs to ground

their understanding of the data presented in them fall into

three categories of classification, namely physically

grounded, spatially grounded, and interpretatively groun-

ded (see Table 1).

Table 1 Criteria used to categorize responses as indicative of one of three types of grounding

Construct Criteria

Physically grounded Speech and gesture bounded by physical and numerical bounds of graph.

No shift to numerical relationship during FP tasks (representational disfluency).

Spatially grounded Expresses in speech or gesture need to enlarge the graph to solve FP tasks.

May or may not shift to numerical relationship during FP tasks (representational disfluency).

Interpretatively grounded Speech or gesture unbounded by physical and numerical bounds of graph.

Shifts to numerical relationship before or during FP tasks (representational fluency).

Representational disfluency in algebra
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4 Results

We present descriptive statistics, as well as exemplary

cases, to illustrate the physically, spatially, and interpre-

tatively grounded ways in which students use Cartesian

graphs (see Table 1). In each interview, students responded

to a sequence of questions scaffolded in ascending order of

complexity, starting with more procedural, skill-assessing

tasks and then moving to more conceptual, problem-solv-

ing tasks (see Fig. 1). The analyses of the interview data

presented here focus on the two FP tasks that necessitated

students’ reasoning beyond what were explicitly presented

in the graphs [parts (d) and (e)]. Friel and colleagues (2001)

suggest that procedural tasks ask students to focus their

attention on one quantity, while more conceptual tasks

require attention to be focused on information across data

points. Hence, the conceptual tasks in our study, parts (d)

and (e), are also more difficult than more procedural tasks.

As the majority of the students in our sample (71%) were

quite proficient in correctly solving the procedural task

[part (c)] in the interview, the focus of these results is to

describe evidence of representational disfluencies when

students solve tasks involving pattern generalization.

4.1 The physically grounded case

As described in Table 1, students interpreting the graph in

more physically grounded ways used speech and gesture

evoking a bounded view of the graph. Of the total

responses across both parts (d) and (e), 37.5% (n = 27) of

the responses used gestures that were bounded within the

graph (see Table 2).

To illustrate how a bounded view of Cartesian graphs is

evident in students’ work, we present selected segments

from an interview with an eighth-grade student named

Paul. Paul’s responses to parts (a) and (b) indicated that he

was very familiar with Cartesian graphs, as he stated:

‘‘Well I mostly know how to do all this because it’s mostly

review because this as everyone knows is a graph.’’ Fur-

ther, he provided a correct response to part (c) without any

hesitation, indicating at least a minimal ability to read the

graph. From Paul’s performance on the first three ques-

tions, in particular the third question, he appeared

competent in reading the data (Curcio, 1987 by demon-

strating understanding of the structure and mechanics of

Cartesian graphs by successfully completing basic proce-

dures involving their interpretation.

In part (d), Paul needed to extrapolate from the infor-

mation given to answer the question ‘‘What is the cost to

make 10 copies of a CD?’’ While 10 is within the domain

as visually depicted in the x-axis, the cost represented by

the point (10,31) lies beyond the frame of the graph. Curcio

(1987) refers to this more demanding competency as

reading between the data.

For part (d), Paul wrote an answer of $23, accompanied

by an explanation (see Appendix B). It is evident from

Paul’s response that he does not attempt to find a numerical

relationship between the given points to determine the cost

to make 10 copies. His gestures indicate that he is aware of

the need to place a point corresponding to 10 copies on an

appropriate gridline, complimented by a guess that the

point should be at (10, 23) as depicted in lines 4 and 5.

From his guess, he wrote an answer of $23 as the cost of 10

copies. Although he refers to his strategy as guessing, his

gestures seem to indicate that he knows that the point

should be placed on the line x = 10, but the range of the y-

axis limits his ability to accurately determine where the

point should be placed along the line. The gestures he

produces during his explanation of part (d) stay within the

physical limits of the graph as it is drawn, even though the

task asks him to find values beyond those limits, and his

verbal responses indicates no attempt to reason more

generally from the points plotted or to extrapolate beyond

the information given. Thus, as he seems to pick a point

given on x = 10, but fails to generalize a pattern, Paul’s

solution was not assigned a pattern generalization strategy

code (as listed in Appendix A).

For his response to part (e), Paul quickly acknowledges

to the interviewer that he ‘‘has no idea.’’ The interviewer

proceeds to scaffold Paul’s response by drawing a line

connecting the points on the graph, extending beyond the

uppermost y-value gridlines, with a ruler. She then asks,

‘‘Does that help you figure out what the answer might be?’’

Paul responds, ‘‘No, not really.’’ Paul admits to recognizing

that she has just drawn a line, but is not sure how that helps

him answer the question. Thus, even with the prompt from

the interviewer revealing a linear relationship between the

points on the graph, Paul does not see a way to extrapolate

the pattern as given or to translate the graphical informa-

tion into a different representation such as a numerical

description of the relationship to answer the far prediction

question of part (e).

Paul, like other students who may interpret the graph in

a bounded way, makes no attempt to alter the graph or

translate the information to another representation that

might aid his analysis. Figure 2 shows that students who

Table 2 Frequency of bounded and unbounded gesture production

across FP tasks

N = 36a Part (d) Part (e) Total

Bounded 14 13 27

Unbounded 22 23 45

Total 36 36 72

a We had no gesture data for two students for parts (d) and (e)
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made exclusively bounded gestures when using the graph

for part (d) tended to use spatial, arithmetic, and estimation

strategies more, a linear strategy less, and an enlarge

strategy not at all. Being physically grounded to the graph

may constrain students’ abilities to apply the mutable

features of the graph, such as the scale of the axes, to help

them make modifications that can reduce the complexity of

the task or translate information from the graph.

4.2 The spatially grounded case

Students who are physically grounded to the graph, like

Paul, experienced difficulty in extrapolating patterns from

the graph. However, a greater number of the participants

(n = 23; 64%) were not physically grounded to the graph.

Of these students, some still exhibited some representa-

tional disfluency, employing strategies of spatial estimation

or altering the graph to help them find solutions to far

prediction tasks instead of translating the information in the

graph to a numerical or symbolic form.

Students’ responses were coded as using the Spatial

Estimation or Enlarge strategies (see Appendix A) if they

either visually estimated where points would be plotted or

altered the given representation to meet particular needs,

such as a greater range for the y-axis, but did not translate

to a new representation. Our data shows that neither

strategy was particularly effective for the participants;

spatial estimation was used to obtain correct answers on

either (d) or (e) only 25% of the time, but enlargement,

while a creative solution method that involved physically

altering the graph, was never applied successfully. Further,

the Enlarge strategy was not frequently employed by the

participants; six responses in part (d), and six responses in

part (e) were coded as Enlarge where only two students

used the Enlarge strategy for both responses. Thus, to get a

better sense of students’ performance, the ways in which

students switched strategies between parts (d) and (e) more

accurately reflects how students employed particular

strategies. Table 3 shows strategy switching by students

from part (d) to (e).

In Table 3, the cells that are shaded gray indicate the

number of responses coded as the same strategy across

both FP tasks. For example, four students who answered

part (d) using an Enlarge strategy (n = 6) also used the

Enlarge strategy to answer part (e). Only one of these six

students ultimately translated to a Linear strategy to answer

part (e). Also, students were more likely to switch strate-

gies if having answered part (d) with either a Linear or

Pragmatic strategy (67%), than for students who answered
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Fig. 2 Comparison between of strategy use and boundedness of

gesturing for responses to part (d)

Table 3 Strategy ‘‘switching’’

(or maintenance, in gray fields)

across parts (d) and (e)

All entries represent number of

student responses

Part (e)  

Part (d)  

No 

response 

Pragmatic 

 

Spatial 

Estimation 

Enlarge Arithmetic Linear Total 

No 

response 

2 0 1 0 0 0 3 

Pragmatic 0 3 1 0 4 1 9 

Spatial 

Estimation 

1 0 4 1 1 0 7 

Enlarge 1 0 0 4 0 1 6 

Arithmetic 1 0 0 0 9 1 11 

Linear 1 0 0 1 0 1 3 

Total 6 3 6 6 14 4 39 
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part (d) with Spatial estimation (43%), Enlarge (33%) or

Arithmetic (18%) strategies.

To further elucidate the construct of spatially grounded

to the graph, we present a case featuring Sophia, a sixth-

grader attending the same school as Paul. Like Paul, Sophia

provided a correct answer to the point interpretation task in

part (c), hesitating only 5-s after the interviewer had posed

the question. The FP tasks in parts (d) and (e) posed more

of a challenge. Unlike her response to part (c), Sophia

exhibited some apprehension and uncertainty when

responding to part (d) (see Appendix B).

Sophia began her response to part (d) by pausing a

notable 11 s after the interviewer stated the question. It is

clear that Sophia realizes that the correct answer is greater

than $23.00, but she is unable to use the graph to—liter-

ally—find the answer. Throughout her verbal report, her

gestures remain within the boundaries of the grid formed

by the x- and y-axes. In Sophia’s case, finding the answer

corresponds to seeing the answer spatially on the graph.

This may explain why she indicates a desire to extend the

y-axis in lines 13–17.

Sophia’s response to part (d), a Graph Enlargement

strategy, shows a spatially grounded use of the graph as

we have defined this construct. There was indication

throughout her responses to the interview questions that

she could read points off the graph with facility, but

there was no indication that she had developed a math-

ematical rule linking the points placed on the graph.

While her verbal response was definitely beyond the

numerical limit of the y-axis, the bounded nature of her

gestures indicated a persistent need to be spatially

grounded to the graph. Further, Sophia’s need to extend

the graph to answer far prediction questions persists in

her response to part (e) in Appendix B. Although she

declines to provide an answer to the fifth question, she

again describes a method of extending the graph that

could help her to find a solution coded as the Enlarge-

ment strategy (see Appendix A).

Unlike Sophia, the majority of students employing an

Enlargement strategy actually performed the enlarge-

ment, usually by drawing extra columns to the right of

the maximum point shown along the x-axis and adding

extra rows beyond the maximum point shown along

the top of the y-axis. Another interesting aspect of the

interview is her use of the word ‘‘it’’ in line 9. One

interpretation of what she might be referring to as ‘‘it’’

would be the spatial pattern between the dots plotted.1

Nevertheless, this statement also indicates that she is at

the mercy of what she sees on the graph, rather than in

control of manipulating the information she extracts from

the graph.

4.3 The interpretatively grounded case

While spatially grounded students may be able to answer

FP tasks using Cartesian graphs to the extent that the

physical affordances of the size of the paper, or perhaps the

program of a graphing technology, will allow, it is neces-

sary for students to be able to generalize to more abstract,

symbolic representations to fully realize the power of

mathematics. As stated in the 2000 National Council for

Teachers of Mathematics Principles and Standards for

School Mathematics: ‘‘One of the powerful aspects of

mathematics is its use of abstraction—the stripping away

by symbolization of some features of a problem that are not

necessary for analysis, allowing the ‘naked symbols’ to be

operated on easily’’ (p. 69). Thus, as students progress in

their understanding of relationships between graphs and

symbolic equations, they will be more interpretatively

grounded to the graph. Students who exhibit this type of

grounding translate the graph into a more mathematically

abstract representation, such as an equation, and connect

the equation to the graph to make sense of the outputs that

result when manipulating data in the equation. In other

words, interpretative grounding capitalizes on the affor-

dances of representational fluency.

The most effective strategies were Linear (which led to

a correct answer 50% of the time) and Arithmetic (which

had a 35% success rate). Both strategies required students

to translate the quantitative information from the graphical

representation to a numeric or algebraic representation,

thereby exhibiting one form of representational fluency.

For part (d), as Fig. 2 shows, students who were coded as

giving unbounded gestures never used the most effective

and most general method, the Linear strategy. These stu-

dents tended to use arithmetic methods (33% of the time),

estimation methods (22%), and the enlargement strategy

(17%). Unbounded codes were also more closely associ-

ated with ‘‘I Don’t Know’’ responses (17%), indicating

that, while these students imagined the pattern continuing

beyond the graph as depicted, they did not have the ana-

lytic skills to determine how to proceed.

We found that part (e) was a more complex task than

part (d). Over half (53%) of the 38 students in our study

correctly solved the part (d) item, while only 26% were

successful with part (e). While boundedness in gesturing

did not seem to play a role in students’ strategy choice for

the simpler FP task [part (d)], a similar analysis of the more

complex FP task (Fig. 3) showed that those with bounded

gestures now used the Linear strategy in lower numbers

1 Another possible interpretation of Sophia’s use of the word ‘‘it’’ in

line 9 is that she is referring to the graph as a whole unit, and views

either the graph or the points plotted as malleable and organic.
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than those responding with unbounded gestures in refer-

ence to the graph. On one hand, we might expect the more

difficult FP tasks to lead to greater use of more sophisti-

cated, generalized ways of working with the data pre-

sented—such as a Linear strategy. On the other hand, it is

worth noting that a noticeable change only occurred for the

group with unbounded gesturing, suggesting a link between

the production of unbounded gesturing and greater repre-

sentational fluency. That this relationship is reliable is

shown by a significant chi-square test comparing bounded

and unbounded gesture use with strategy changes,

X2(1) = 12.6, P \ 0.001.

In the following case, the responses of 1 seventh-grade

student, Isabel, to the same set of tasks completed by Paul

and Sophia, fit our criteria of what constitutes interpreta-

tive grounding to the graph. In Isabel’s responses, she

appears to shift to a more mathematically abstract repre-

sentation of the data in the graph during the interview.

However, her translation of the data is flawed. Thus, while

being interpretatively grounded to the graph is the desired

behavior, it is not sufficient for correct performance on FP

tasks.

The differences between Isabel’s ability to flexibly work

between representations and the challenges that Paul and

Sophia faced to do the same are evident in Isabel’s

response to the less complex FP task in part (d). In her

response (see Appendix B), we see how Isabel uses gen-

eralizations she has already made about the graph, and

questions these generalizations as she translates from the

graph to a numerical representation. In lines 6–7 of her

response to part (d), Isabel questions her strategy of mul-

tiplying the number of copies by three, by identifying

information in the graph that does not match the pattern she

has established. In particular, she recognizes that 7 times 3

is 21, not 22 as shown in the graph when x = 7. Until this

moment, Isabel had not identified the role of the y-intercept

in establishing the linear relationship. She likely had just

been using the differences in the y-values of the points

plotted to determine the linear relationship—which hap-

pened to be the value of the slope of the line because the x-

values of subsequently plotted points differed by 1. She

used this difference as a factor to multiply by y-values of

given points, a form of the strategy coded as Arithmetic

(see Appendix A).

What is quite surprising about her response is how

quickly she determines the information she overlooked,

indicated by pointing to the y-intercept in line 9. She uses the

graph as a ‘‘check’’ on her symbol representation, moving

between abstract, mathematical computations and the spa-

tial properties of the graph to make sense of results. Her

ability to move flexibly between representations is typical of

those who are interpretatively grounded to the graph.

At the end of the excerpt, in lines 16–21, Isabel

described her new strategy known as the ‘‘recursive arith-

metic’’ strategy (e.g., Lannin, Barker & Townsend, 2006)

as described in Appendix A. While this method is less

sophisticated than creating a linear equation like y = 3x to

describe the relationship between the points, it is none-

theless appropriate for answering the question. Isabel’s

confidence in her solution strategy is evident in her

response to part (e), ‘‘What is the cost to make 31 copies of

the CD?’’ Without even referring to the graph for infor-

mation to help her solve the problem, she employs the

recursive arithmetic strategy she developed while solving

part (d). As her response to part (e) shows (see Appendix

B), at this point in the interview she has shifted from

relying on the graph to interpolate and extrapolate, to using

a more abstract and efficient method.

Much of Isabel’s response to this question indicates that,

while not possessing a complete understanding of linear

relationships, she is comfortable with both graphical and

symbolic representations. Her verbal and gesticulated

responses in lines 12–15, ‘‘it is the same thing because it is

still the same graph,’’ show that she understands her

mathematical equation is representative of the visual pat-

tern. Following Curcio’s (1987) framework, she reads from

the graph. In its explicit form, her response shows that she

believes that the pattern is consistent, regardless of whether

she uses the graph or her arithmetic strategy. She clearly

indicated the presence of a y-intercept as evident in lines 6–

8. Furthermore, she interprets the meaning of the y-inter-

cept for this graph in lines 8–9, a clear indication that she is
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gesturing for responses to part (e)
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interpretatively grounded to the graph. However, her ver-

balized strategy in lines 3–4 makes it difficult to claim that

she has conceptualized these points as sharing a linear

relationship. She stated that the y-intercept ‘‘messed [her]

up’’ in lines 9–10, instead of recognizing the influence of

the y-intercept on all points plotted. Isabel seems to have an

emerging understanding of linear concepts because she

identifies the source of her confusion to be the y-intercept

before adjusting her calculations by adding 1 to make her

answers fit the data.

5 Conclusions and implications

One of the major goals of algebra instruction is to

develop students’ competencies with and across formal

representations (e.g., Nathan & Kim, 2007; National

Council for Teachers of Mathematics, 2000; RAND,

2003). Our study serves to illustrate the potential of visual

grounding that the Cartesian graph provides, and to shed

light upon how students negotiate the affordances and

constraints of the Cartesian graph when solving problems,

which require extrapolation from the information given in

the graph. Grounding provides learners with a way to map

the unfamiliar to the familiar, and thereby facilitates

meaning making. However, grounding to concrete

instances and interpretations can have a negative effect on

later problem solving (Goldstone & Son, 2005; Kaminski

et al., 2008). Pinker (1990) and Zhang (1997) argued that

one’s reasoning may be overly influenced by a represen-

tation’s visual qualities, rather than the conceptual rela-

tions that the spatial representation is meant to convey. In

the case of the physically grounded student, Paul, we see

that the ability to solve FP tasks is inextricably linked

with what information the Cartesian graph can visually

provide. Hence, the student falls victim to a key con-

straint of the Cartesian graph: a finite ‘‘frame’’ or ‘‘win-

dow’’ for depicting information. For Sophia, the spatially

grounded student, the ‘‘frame’’ of the Cartesian graph is

mutable. The graph’s axes can be extended, and if the

axes and labeling remain consistent, the extended region

can be used to see solutions to formerly FP-like tasks. For

spatially grounded students, the constraint of having a

finite ‘‘frame’’ can be manipulated with the assistance of

technology such as the graphing calculator to the point

where it becomes an affordance of Cartesian graphs,

namely that there is no theoretical limit to the viewing

window. However, the most sophisticated, and efficient,

use of Cartesian graphs is demonstrated by students like

Isabel who are interpretatively grounded to the graph.

Students like Isabel deal with the physical constraints of

the graph by translating the information provided into

representational forms that are not visually bounded, such

as algebraic equations, which can support patterns of

unlimited domains and ranges. For these students, graphs

are used to interpret patterns in the data, not as a primary

means for extrapolating from the data. In this sense,

graphs truly serve in the generalization of numerical

patterns.

The cases we present suggest many implications for

early algebra instruction. First, while grounding is often

the objective of mathematical instruction, there are neg-

ative effects that should not be overlooked. Second, our

data show that gestures along with speech provide rich

insights into how people encode and interpret represen-

tations. Specifically, gesturing limited to the physical

bounds of the graph may indicate that the student views

the graph as inherently limited by its physical form, and

may serve as a signal that instruction should emphasize

the theoretically unbounded nature of the functions por-

trayed in the graphs.

Our study certainly suggests that building competencies

in using Cartesian graphs as a tool for generalizing patterns

requires continual and consistent pedagogical effort. We

speculate that one way to assist students in recognizing the

limitations of Cartesian graphs and developing skill in

graphical pattern generalization is to include more oppor-

tunities for students to encounter far prediction tasks early

and frequently in their math education. While Cartesian

graphs are a useful tool for charting data and manipulating

geometrical forms, they are not the only tool for finding

relationships among data. Mathematical work that focuses

solely on having students graph equations of lines and/or

plot data points without eliciting an equation or generalized

rule to represent the relationship among the data plotted

may misrepresent the value and purpose of creating

Cartesian graphs.
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Appendix A: Students’ pattern generalization strategy

codes

See Table 4.

Table 4

Strategy name Description Example response Relationship to

representational fluency

Frequency [both

parts (d) and (e)]

Arithmetica A constant rate of change

between points, with no

reference to influence of

y-intercept

‘‘The points go up by 3 every

time’’

Translate to generalized

numerical pattern

n = 14

Linear combinationa Decomposes target x-value

into smaller amounts.

Determines y-values for

smaller x-values, then

combines those y-values

to determine y-value for

target x-value

‘‘Since I need to find the cost to

make 31 copies, I took the cost to

make 10 copies, which was $30

then I multiplied it by 3 to get

$90, then I added 1 so the answer

is $91’’

Fixed to graphical

representation

n = 6

Recursive arithmetica Determines the constant

rate of change between

subsequent points plotted

and, from the y-value of a

point, adds on the

constant rate of change

until the target x-value

has been reached

‘‘So if y = 19 when x = 6, and the

points differ by 3, then 19, 21,

24, 27, 30, y must by 30 when

x = 10’’

Fixed to graphical

representation

n = 7

Lineara Finds the cost to make 0

copies and then finds the

constant rate of change in

cost as the number of

copies increases by 1

‘‘I know for every copy you make

the cost goes up by $3, and the

cost to make no copies is $1, so

31 copies would be 3 times 31

which is $93 plus the initial cost

which is $1 so $94 dollars

Translate to generalized

numerical pattern

n = 8

Pragmatic Grounds the information in

the graph to real-world

experience; uses

‘‘common sense’’ to

determine solutions

‘‘So, 1 CD is like 5 bucks, so it

would cost like 150 or 200 bucks

to get it done, to make 31 CDs’’

Translate to alternative

context

n = 9

Spatial estimation Uses visual patterning of

point placement to

estimate where the target

point would be placed

‘‘So it looks like the points fall

along this line. [places ruler flush

with points] If I follow this line

up to where x = 10 crosses it, it

looks like the point would be

placed around y = 30’’

Alters graphical

representation

n = 16

Graph enlargement States that the solution can

be found by adding the

necessary amount of rows

and/or columns to plot the

target points

‘‘To find 31 copies, I would have

to draw out the x-axis to 31 and

increase the y-axis to see what it

would do’’

Alters graphical

representation

n = 12

Rescale Adjusts scale of x- and/or y-
axis to obtain greater

minimum and maximum

values

Crosses out values for 1, 2, 3, 4, 5,

6 on x-axis and replaces these

values with 13, 14, 15, 16, 17,

18, respectively

Alters graphical

representation

n = 1

a Codes that were obtained from prior research on algebraic problem solving
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Appendix B: Transcripts of student responses2

Paul’s response to part (d) 

1 Oh I don’t know. I just  guessed  (places eraser tip on lo wer portion of gridline  
2 for x = 10) since, you know,  6 CD’s (taps x = 6 with eraser) you  pick the 
3 (points eraser tip up to dot for (6,19) )  dot right there…19 buc ks. Might as well
4 just…. right there (taps x = 10 with eraser tip  twice, then points up the  
5 gridline for x = 10 to the upperm ost point on the graph (10,23).  

Sophia’s response to part (d) 

1 Sophia: (Long pause) Like, I like did, like, an  estimate  (thumb and   
2 middle finger span y=18 to y=23 on left side of  y- axis ) question. Like a  
3 guess. And I guessed (touches x=10 on  x- axis with second finger of 
4 left hand) if like you had 10 copi es and 6 copies is $19.00 and like  24 
5 (thumb and middle finger of left hand  span y=16 to y=23 on left side  
6 of y- axis), if you make (touches x=10 on  x- axis with second finger of   
7 left hand) 10 copies, has to be (touches top of  y- axis with left hand) 
8 like $23.00 or  more  (spans thumb and middle  finger alongside left side  
9 of y- axis with thumb at (0,23) and mi ddle finger slightly higher above 
10 the axis. Flicks middle finger vertically while saying "more". Then  
11 returns thumb and middle finger to original span).  

12 Interviewer:  OK. And how do you know that?  

13 Sophia: Because, because it (touches second and middl e fingers of left 
14 hand at the bottom of  y- axis) like has to increase (moves left hand   
15 from area around (0,1) and (1,4) and  diagonally to area for (6,19) and  
16 (7,22); taps above graph, above the wo rd ‘Copies' with middle finger)   
17 more.” 

Sophia’s response to part (e) 

1 Interviewer: So now I'm going to ask you the bigger number. Thirt y- one 

2 copies of the CD, do you know how much it would cost?  

3 Sophia: No, not really.  

4 I: No. Can you say how you might figure it out?  

5 Sophia: Like, you could  like (touches left hand to label for  x- axis) expand the  
6 graph to (slides from left to right on  x- axis) 31 copies and be  like ( spans left 
7 hand along top and bottom of  y- axis), like  23, 24 ( touches label for y = 23  
8 with finger while saying " 23"; slides finger up slightly while saying "24") you 
9 know, like to ( slides middle finger vertically a bit) see what it would  do ( taps 
10 top of  y- axis with middle finger). To 31 copies.   

2 Gesture events coincide with boldface text and are described in

parenthetical statements.
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