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Using the perspective of instructional conversation, we investigated how one teacher regulated student
participation and conceptual reasoning in the middle-school mathematics classroom. We examined
the elicitations—questions and provocative statements—made by the teacher over a four-day algebra
lesson. Analyses showed how the teacher systematically regulated the level of cognitive complexity
of his elicitations in reaction to students’ responses. When students gave inaccurate or incomplete
answers, the teacher tended to reduce the level of cognitive complexity needed to respond to a
subsequent elicitation, with the apparent impact being that he scaffolded participation and rea-
soning. When students provided responses that were mathematically accurate, the teacher usually
increased the elicitation level, which subsequently engaged students in more sophisticated forms of
reasoning.

REGULATION OF TEACHER ELICITATIONS AND THE IMPACT ON
STUDENT PARTICIPATION AND COGNITION

Traditional forms of mathematics instruction tend to focus on getting the answer correct and
recalling facts and procedures, but often leave students unengaged and unprepared for com-
plex and novel problem solving (National Research Council, 2000). The aim of contemporary
mathematics education reform is to make a ı̀shift from learning mathematics as accumulated
facts and procedures to learning mathematics as an integrated set of intellectual tools for mak-
ing sense of mathematical situationsı̂ (National Council of Teachers of Mathematics [NCTM],
1991, p. 2).

Studies of classroom interactions have generated wide interest in how teacher-to-student and
peer-to-peer talk promotes students’ active participation and provides the pedagogical scaffolds
that allow students to engage in sophisticated mathematical reasoning and critical reflection
(Cobb, Wood, & Yackel, 1993; Hatano & Inagaki, 1991). Yet we have limited understanding
of how student participation in classroom discussions is regulated by the teacher’s talk, and the
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impact this has on students’ conceptual reasoning. Advancing this understanding will increase
our knowledge of the nature of language use in educational settings, and also contribute to
our theoretical understanding of the relation between communication and collaborative learning
(Baker, 2007; Sfard, 2007).

Student repair of trouble sources is no longer a sufficient marker of mathematical under-
standing. Students are now being directed to engage in extended, complex reasoning that often
involves collaboration, and to go beyond getting an answer “correct” by also verbalizing their
reasoning processes and justifications, and reflecting on their understanding of the underlying
concepts (e.g., Cognition and Technology Group at Vanderbilt, 1997). Students in this context
must publicly communicate their mathematical ideas, as well as listen and critically evaluate the
ideas expressed by others. The teacher’s role in these settings then expands to include the role of
facilitator of students’ mathematical participation.

Numerous studies have looked at classroom discourse to better understand how teachers stim-
ulate students’ participation and engagement, and scaffold students’ activity and the construction
of mathematical knowledge (e.g. Atkins, 1999; Cobb, 1995; Cobb et al., 1993; Hatano & Inagaki,
1991; Hufferd-Ackles, Fuson, & Sherin, 2004; Sfard, 2007). However, the effect of teachers’ elic-
itations on students’ learning is still not well understood, and studies of its impact show mixed
results. Studies also reveal how much teachers struggle in their new roles as facilitators within
discourse-based learning environments (e.g., Nathan & Knuth, 2003; Rittenhouse, 1998). Further
investigation of these interactive processes can yield important insights into how the teacher
elicits students’ participation in academically oriented ways of talking and thinking (Cobb, 2000;
Cobb & Bowers, 1999; Williams & Baxter, 1996).

This current initiative acknowledges the central role teachers play in facilitating classroom
discourse by scaffolding students to verbalize their ideas and critically evaluate the ideas of
others. It seeks to deepen our understanding of how teacher invitations for students to participate
in classroom discussions occur, and how they may engage students and subsequently foster
higher-order reasoning.

Mehan (1979) defined elicitations as those forms of communication that “engage participants
in the exchange of academic information about factual matters, opinions, interpretations, or
the grounds of their reasoning” (p. 64). In this investigation, we focused on the nature and
fluctuations of the teacher’s elicitations—the questions, pauses, and provocative statements that
engage students and prompt them to respond. We examined the patterns of teacher elicitations and
student responses over the course of a four-day lesson drawn from a beginning algebra unit in a
middle-school classroom. We studied how one teacher’s elicitations were regulated, consciously
or unconsciously, in reaction to student responses to earlier prompts, the levels of reasoning
subsequently exhibited by students, and the apparent impact this had on the overall structure
of the classroom discourse as it unfolded over time. From this analysis we found patterns of
regularity relating teacher prompts and student responses in reciprocal ways. We also examined
how regulation of teacher-generated elicitations enabled students to engage in higher levels
of mathematical reasoning than they exhibited on their own. In this sense, teacher elicitations
contributed to the scaffolding process by providing socially mediated supports to the class as a
whole (Nyikos & Hashimoto, 1997). We believe these findings contribute to emerging theories
of classroom based learning, and can inform programs of teacher education and professional
development.
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CLASSROOM DISCOURSE

As a conversational form, classroom talk is special (Drew & Heritage, 1992), shaped, in part, by
the unique relationship of authority between class members and the teacher (Schultz, Erickson, &
Florio, 1982). Unlike conventional conversation, whole-class discourse typically models a partic-
ipation structure predictably controlled by a single conversant, the teacher (Nystrand, Gamoran,
Kachur, & Prendergast, 1997), who also has a professional obligation to foster student learning.
Teachers ask most of the questions and typically maintain the right to call on students and allocate
turns, “in essence organizing and orchestrating the discussions” (Greenleaf & Freedman, 1993,
p. 466; also see McHoul, 1978). International comparisons show that “the kinds of questions
teachers ask influence students’ opportunities to think and communicate mathematically during
lessons” (Kawanaka & Stigler, 1999, p. 255).

Mediation of Classroom Discourse

Interest in how classroom discourse scaffolds students’ participation and reasoning follows on
the heels of recent education reforms, which recognize classroom discussion as an effective
way to perform instruction, conduct knowledge assessment, and facilitate learning in the content
areas (e.g. NCTM, 2000; National Research Council, 2000, 2005). In addition to acquiring
facts, notations and procedures, learning mathematics involves participation in the activities
of the mathematics community (Lave & Wenger, 1991). This participatory aspect is evident
across several levels of analysis, such as how novices move from peripheral to more central
involvement in the community’s discursive practices, as a way to describe the tensions that
operate between minority students’ academic and racial identities (Nasir & Saxe, 2003), theories
for explaining behavioral shifts when people move from one regional or cultural setting to
another (Gee, 2005), and as a way to characterize the course of historical development of
mathematical ideas (Sfard, 1995). For example, Gee (2005) explored how young people’s access
to different styles of language inherent in different social settings can facilitate or obstruct their
access to academic knowledge and the economic opportunities that then follow. Nathan and his
colleagues (2007) showed that as students struggled to understand one another’s mathematical
representations, the group adopted—without any centralized directive—conventions such as
labeling, color-coding, and principles of perspective drawing. This helped to foster common
ground among the participants and clarify the spatial, temporal, and semantic relations that were
central to the solution representations they were trying to convey. These examples illustrate how
participation in classroom discourse provides opportunities for learners to be active members in
a learning community and to structure their own learning experiences (Tharp & Gallimore, 1991;
Wertsch, 1991, 1994).

Sociocultural theory asserts that mental processes are mediated by semiotic tools, such as
objects (e.g., mathematical manipulatives like construction cubes), diagrams, formal systems of
notation and, most notably, language. These semiotic tools serve a mediational role by structur-
ing interlocutors’ mental activities and transforming interpersonal (i.e., social) actions to intra-
personal (psychological) processes (Vygotsky, 1978; Wertsch, 1991, 1998; Wertsch & Toma,
1995). Activity with these tools, such as participation in certain forms of problem solving, enables
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the internalization of socially constructed mental activities that emerge later as advancements in
learners’ cognitive development (Werstch, 1995).

In a similar vein, Gal’perin (1969) demonstrated that the materialization and verbalization
that occurred with physical learning materials—actual tools and objects—mediates learners’
cognitive processing and, as a consequence, facilitates their internalization of mental operations
and concepts that are directly related to the physical activity. Working from within Gal’perin’s
framework, Talyzina (1981) found that the verbalization stage was indispensable for learners’
development of higher order of thinking. Thus, through verbal externalization, learners can
organize their thoughts into verbalizable units and articulate their own hypotheses. This leads
them to reflect on and critically examine their underlying knowledge, and can lead learners to
eventually restructure their understanding (Nathan, Eilam, & Kim, 2007; Slobin, 1996; Swain,
2000; Wells, 2000).

Classroom communication is seen as a powerful mediator of change in these complex cognitive
behaviors, because communication fosters meaning making, self-monitoring and reflection, and
the co-construction of new ideas. Instructional conversation (e.g., Tharp & Gallimore, 1991) plays
an important role in discourse-oriented classrooms because it helps scaffold students’ access to
higher levels of cognitive processing. Teachers can facilitate participation in the discourse through
scaffolding; that is, by inviting students into a social interaction that is also pedagogical.

Scaffolding

Scaffolding is a form of instruction that emphasizes the socially mediated nature of knowledge
and teaching (Bruner, 1986; Vygotsky, 1978). With scaffolding, a more knowledgeable “other”—
such as a teacher, parent, or more experienced peer—provides temporary support for learners so
they can participate in more advanced reasoning and behavior than they are capable of performing
on their own. The supports offered by the teacher then gradually fade away to allow for ever-
increasing learner autonomy. This approach draws directly on Vygotsky’s (1987) sociocultural
theory of cognition, specifically, his General Genetic Law of Cultural Development, which states
that any cognitive function that develops first appears in the social realm (through interpersonal
interactions such as scaffolding and modeling) and then in the psychological realm, as internalized
by the child.

Interactional Scaffolding

Teacher elicitations can directly contribute to the scaffolding process (McCormick & Donato,
2000). Cazden (1988) argued that classroom instruction should be organized around the scaf-
folding modes such as W-H elicitation questions (why, where, who, what, and how) for probing
the next piece of information. Through scaffolding, learners internalize knowledge that they co-
construct with experts (Bruner, 1984; Wertsch, 1979). Cued use of W-H questions can promote
internalization of publicly displayed knowledge and forms of dialogic interaction as external
classroom interactions are overtly shifted to internal mental processes.

In addition to internalization, scaffolding through elicitation questions can assist individ-
ual learners so they outperform their autonomous competence within their zone of proximal
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development (ZPD). As defined by Vygotsky (1978), ZPD is metaphorically taken as “the dis-
tance between the actual developmental level as determined by independent problem solving and
the level of potential development as determined through problem solving under adult guidance
or in collaboration with more capable peers” (p. 86). More specifically, Scollon (1976) identi-
fied this instructional support as interactional scaffolding because teacher elicitations draw out
students’ self-directed solutions and their metaprocess level justifications.

Educational reformers, particularly in the mathematics and science communities, have at-
tempted to utilize some of the principles of socially mediated learning as they emerge during
classroom interaction (Ball, 1996; Cobb, 1995; Cobb, Stephan, McClain, & Gravemeijer, 2001;
Cobb et al., 1993; Cognition and Technology Group at Vanderbilt, 1997; Lehrer, Strom, & Con-
frey, 2002; Lantolf, 2000; Wertsch, 1991, 1994, 1998). Several studies have shown the important
role of teacher questions and other elicitation forms for scaffolding students’ thinking. Roth
(1996), for example, described a case study where the teacher’s questioning was designed to get
students to contribute their knowledge, and to scaffold their intellectual activity to reach inde-
pendent and critical thinking. Chin (2007) examined the types of questions that teachers ask and
the way teachers’ queries influence the cognitive processes that are engaged as students struggle
with the construction of scientific knowledge from an inquiry-based perspective. He showed how
teacher questions could facilitate students’ advancement up a “cognitive ladder,” enabling then
to exhibit higher levels of scientific reasoning and reflection.

Elicitation Techniques, Participation, and Cognitive Processing

The logic underlying teacher elicitation questions and student responses can be found in Conver-
sation Analysis approaches, and is tied to the notion of a conditionally relevant response as a type
of adjacency pair (Heritage, 1984a; Schegloff & Sacks, 1973) where the prompt elicits a relevant
response. However, Mehan’s (1979) ethnographic analyses of classrooms found deviations from
the adjacency pair structure, which showed that sequences may be inserted until the elicitation is
satisfied. This expanded participation structure effectively drives the teacher to communicate with
students as co-participants in the interaction, and invites participants to attend to the group’s inter-
subjectivity, structure learning opportunities, and advance the conceptual understanding needed
to enable formation of the complex cognitive skills required to participate (Donato, 2000; Nathan
et al., 2007; Takahashi, Austin, & Morimoto, 2000).

Teacher elicitations, when effective, can generate more information in the classroom, increase
participation, and foster students’ conceptual development (Cazden, 1988; Mehan, 1979; Nys-
trand et al., 1997). Walsh and Sattes (2005) note that this kind of instructional conversation also
allows the teacher to assay students’ underlying level of knowledge and to adjust the instruction
to meet a student’s emerging understanding (Chin, 2007; Tharp & Gallimore, 1991).

Teacher elicitations, in the form of questions and provocative responses, can be viewed as
occurring at different cognitive levels that reflect the ensuing demands they place on interlocutors.
Several scholars (e.g., Bloom, 1956, 1987; Kawanaka & Stiger, 1999; Nystrand et al., 1997; Wells
& Arauz, 2006) have charted hierarchical systems that reflect the various levels of cognitive
complexity of teachers’ elicitation techniques. The most influential categorization system for
teacher elicitations was offered by Mehan (1979), who identified four types. In order of increasing
cognitive complexity, they are: Choice, product, process, and metaprocess elicitations. Choice
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elicitation (CE) asks students to agree or disagree with what the teacher said in the previous
turn, and so merely depends on students’ recognition of correct information or guessing. Product
elicitation (PE) invites students to provide factual knowledge, such as a name or a place, which
they must generate from long-term memory. Process elicitation (PRE) asks students to provide
opinions or interpretations. Metaprocess elicitation (ME) asks students to connect their responses
with the intentions of a teacher’s elicitation by providing, for example, the justification supporting
a student’s reasoning.

Contributions from Mehan (1979) and Bloom (1987) help researchers to divulge how various
types of elicitation techniques, operating at different levels of cognitive complexity, reveal stu-
dents’ understanding and guide them toward lower- or higher-level cognitive activities. Across
these systems, lower-level cognitive questions are defined as those that require only recogni-
tion or the ability to recall factual information; while higher-level activities require higher order
thinking skills, such as deeper forms of comprehension, interpretation beyond given information,
metacognitive monitoring, reflection, and justification.

Verplaetse (2000) claimed that when students succeed in acknowledging (CE) or recalling
(PE) knowledge at the factual level, teachers would tend to move to a higher level of questioning,
like a metaprocess elicitation (e.g., “How do you know that?”). This has the potential to expand
the interaction with students and further explore their thinking. More generally, by regulating the
cognitive demands of the elicitation down as well as up a theoretical hierarchy, teachers can use
discourse participation as a way to provide scaffolds for students when they are operating at lower
levels of reasoning, and build on a foundation of lower order knowledge in order to scaffold them
to higher order thinking (Yip, 2004), thus extending the developmental level of performance they
exhibit within the instructional interaction.

PURPOSE OF THE STUDY AND RESEARCH QUESTIONS

We assert that teachers exhibit even more sophisticated forms of regulation than those found in
earlier studies (e.g., Verplaetse, 2000), and that they may adjust the cognitive complexity of their
elicitations in response to students’ incorrect responses as well as to their successes. That is,
teachers may systematically, even if unconsciously, move the instructional conversation up and
down the hierarchy of cognitive complexity in their efforts to promote engagement and reasoning.

The main purpose of this study is to examine how one teacher uses discourse over several days
to engage students and promote their participation in higher levels of mathematical thinking. We
show here how the teacher traverses a hierarchy of elicitation forms, with the apparent effect of
fostering participation at cognitively complex levels of discourse. From this detailed case, we
posit that teachers, in their efforts to promote higher order reasoning in the reform mathematics
classroom, can be highly responsive to students’ demonstrated needs, using classroom talk to both
assay student knowledge and promote its advancement. In making this claim, we are not asserting
that teachers are mindful of each of the maneuvers that they make during the discourse, but are
likely guided by much more global considerations, such as establishing certain group products,
reaching broad consensus about mathematical ideas, and adhering to certain norms of respectful
group discussion. We propose that by examining the specific interactions and responses, we
may reveal a structure to the discourse that may not be specifically planned from its outset but,
rather, emerges from the discourse practices (Hutchby, 1996). Once we establish the existence
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and regularity of this pattern of interactions across the corpus, and explore its apparent role in
fostering student participation and reasoning, we explore specific interactions in greater detail
to illustrate the nature of discourse regulation. In the final section, we discuss the implications
of this work for socially mediated learning theory and for teacher practice in reform-oriented
classrooms. We also take up two issues of methodological importance; that of addressing the
teacher’s intentionality, and of assigning causality from highly interactive data.

To guide this investigation, we first ask, How are the teacher’s elicitation prompts regulated
following students’ responses to initial mathematical queries? Our hypothesis is that the reg-
ulation of the cognitive complexity of the teacher’s elicitations is highly responsive to student
statements. As our second guiding question, we ask, how do teacher elicitations provide inter-
actional scaffolding and foster students’ shifts from lower to higher order forms of reasoning?
Our hypothesis is that, over time, as students exhibit mastery with the more basic knowledge, the
cognitive demands of teacher elicitations will increase, providing scaffolds for students to exhibit
their facility with more advanced forms of mathematical reasoning, justification and reflection.

METHOD

Participants

Participants were students in a middle-school mathematics classroom in the western United
States. The participants included one male mathematics teacher and 24 middle/upper-middle-
class students in a combined seventh/eighth-grade class. This was neither the lowest nor the
highest tracked math section. This combined class was about 60% seventh graders who were on
track, along with about 40% eighth graders deemed not yet ready for a full-on algebra course.
Tracking was based on student standardized test performance from the previous year. The highest
tracked class was an eighth-grade class (although it included some advanced seventh graders).
The lowest tracked class was a regular seventh-grade-only class that only used the seventh-grade
course materials.

The teacher had 10 years of experience teaching in elementary and middle school settings. He
was nominated by both the school principal and a sixth-grade mathematics teacher as someone
open to sharing his mathematics instruction with the research community and willing to participate
in an experimental unit designed to enhance students’ algebraic reasoning. The research team
casually observed his teaching in the year prior to this study, and then were a regular presence in
the classroom during the study.

Data Collection

The classroom observations reported here are part of the documentation of the fidelity of imple-
mentation of the experimental unit, an intervention that spanned nine weeks. The focus of this
current analysis is a single lesson, spread out over four consecutive days, that focused on the uses
of tables, graphs, and words, along with algebraic expressions and equations, to represent and
predict the numerical patterns of growth exhibited by cubes of various sizes. This extended lesson
occurred during the seventh week of a larger, nine-week experimental unit on beginning algebra
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that was intended to promote representational fluency, algebraic modeling, and problem solving.
Prior quantitative analyses of student performance data showed that using this experimental unit
led to statistically reliable gains in students’ algebraic reasoning, above and beyond the standard
curriculum, particularly fluency among quantitative representations and reasoning about linear
and nonlinear patterns of growth (for more details on findings from the student achievement
data, see Nathan, Stephens, Masarik, Alibali, & Koedinger, 2002). Our interest in analyzing the
nature of the teacher’s elicitations is to better understand how he was able to regulate students’
engagement and deepen their mathematical reasoning about patterns.

Previously in this unit, students had learned to produce algebraic representations of the patterns
of 1D and 2D growth for perimeter and area of arrangements of square tiles. The topic that is
reported here was the first in which they had encountered 3D patterns of growth and the use of
cubic functions. We chose this particular four-day lesson because it showed sustained interaction
at the level of the whole class while addressing complex mathematics, including the use of
multiple algebraic representations, to describe both linear and nonlinear relationships.

The four specific algebra class sessions under the scope of this study were structured around
three main curricular goals: (a) naming various parts of the 4 × 4 × 4 cube, such as side length,
corners, edges, faces, hidden blocks, and total volume; (b) identifying and recording the growth of
linear and nonlinear patterns of the various parts as students built larger cubes using construction
blocks; and (c) mathematically representing the patterns of growth using words, graphs, tables,
and algebraic expressions that would allow students to form abstractions of the patterns and
generalize the growth behavior for hypothetical cubes of different sizes.

Four 45-minute class sessions were analyzed. One researcher ran a video camera mounted on
a moveable tripod, while a second researcher took field-notes in order to document any events the
videotaping might miss. The teacher typically stood in the front of the class. For this lesson, the
students sat in individual desks arranged in a half-circle along the edge of the classroom, facing
the teacher and the blackboard.

The cube lesson was developed as part of the nine-week experimental intervention aimed at
improving students’ algebraic learning by bridging from their initial solution strategies and rep-
resentations to more formal methods for representing quantitative patterns and solving problems
(Nathan et al., 2002). Certain classroom norms of interaction were established to encourage the
public presentation of students’ mathematical ideas. Sociomathematical norms (Yackel & Cobb,
1996) of the classroom were established early in the school year. These norms included the value
of students’ mathematical solutions, an appreciation for considering alternative solutions and
procedures, and the significance of justifying one’s mathematical ideas. As part of that prepara-
tion, students practiced active and respectful listening skills. The importance of these norms and
skills was revisited throughout the year in order to maintain their presence in contributing to the
classroom climate.

Coding and Data Analysis

This is a descriptive, classroom-centered study that focuses on the structure of student and teacher
discourse. To investigate the classroom interactions, we transcribed the verbal utterances and the
accompanying nonverbal aspects of the discussions, such as changes in voice pitch and emphasis,
use of hand gestures, object use, writing and drawing, and so on. Our basic unit of analysis is
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teacher utterance. This decision was motivated by the unique aspects of formal classroom settings
where the onus for managing classroom talk and turn taking is on the teacher. As McHoul (1978)
notes: “only teachers can direct speakership in any creative way” (p. 188).

Codes were assigned to each teacher utterance. Broadly, teacher utterances were coded as
elicitations and non-elicitations. The teacher’s elicitations are the questions and provocative
statements, as well as requests, continuers, and prolonged utterances that preceded student par-
ticipation. Non-elicitations were limited to mathematical statements and utterances involving
classroom management. Examples of each utterance type are presented in Appendix A.

Of specific interest are elicitations. Although it is generally expected that elicitations contain
W-H interrogatives (what, which, who, when, how), reversed subject–verb order, and a rising
intonation, Mehan (1979) points out that this is by no means definitive in the study of interactional
events. The meaning of a given instructional act in the classroom is not wholly determined by
its grammatical form. Accordingly, elicitations were defined operationally by the responses they
engendered. We relied on work from the Conversation Analysis (CA) tradition (Heritage, 1984a;
Sacks, Schegloff & Jefferson, 1974; Schegloff, 2007) to interpret the particular organization of the
discourse in terms of the communicative actions that they evoked from participants, rather than
attempting to interpret the subjective meaning of the topic the utterances referred to. In particular,
we identified elicitations as speech acts made by a first speaker by virtue of the response as
made by successive speakers (Schegloff, 2007). As Mehan (1979) defines it, elicitations are those
forms of communication that engender exchanges of intellectual information among participants.
In CA parlance, this is referred to as the next-turn proof procedure (Heritage, 1984b), where the
“next turn provides evidence of the party’s orientation to the prior turn” (Arminen, 2005, p. 2). In
this way, we based our coding on a functional evaluation provided by the interlocutors who were
participating in the actual discourse to categorize the type of talk. This provides a systematic
method for assigning categories to conversational events that is in keeping with the actions and
interactions exhibited by the speakers themselves.

Elicitations were further coded according to their types (for examples see Appendix A) and
level of cognitive complexity. We identified several elicitation types: questions, which make an
overt inquiry and exhibit rising tone; continuers and back channels, which encourage the current
speaker; provocative statements, prolonged utterances, calling a student by name, and explicit
requests. Inter-rater reliability for coding the types of elicitations was 95.8 % (Cohen’s kappa =
.93).

In addition to categorizing the elicitation types, we applied a coding scheme to assign a
cognitive level of complexity to each teacher elicitation, based on Mehan’s (1979) framework,
Bloom’s (1987) Taxonomy, the cognitive levels identified by Nystrand and his colleagues (2003),
and the coding scheme used by Webb and her colleagues (2006) that documented a range of
classroom behaviors from the simplest to the most complex. Assignment of cognitive level went
beyond the surface structure of each elicitation and depended on the depth of response needed to
satisfy the elicitation as well as the context of the utterance sequence (e.g., Drummond & Hopper,
2003; Nystrand, Wu, Gamoran, Zeiser, & Long, 2003). For example, when we encountered a
continuer (“uh-huh,” “okay”) in the discourse, we looked to see what prior cognitive level was
being encouraged.

We synthesized these schemes into four ever-increasing cognitive levels of complexity (see
criteria and examples in Table 1): those that required a yes/no decision (Level I, Choice Elicitation,
CE); those seeking factual knowledge (Level II, Product Elicitation, PE); elicitations made by
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TABLE 1
The Criteria and Examples of the Four Levels of Cognitive Complexity of Teacher Elicitations

Level I: Choice Elicitation (CE)
Criteria Asking the respondent to produce a yes/no response or select among a fixed set

of alternatives.
Example 1. S: well, there’s three different sides of top (0.3) but they both share one.

2. →T: ok↑a::↓y. so, it’s a shared side?
3. S: yeah.

Level II: Product Elicitation (PE)
Criteria Asking respondents to recall or describe factual mathematical knowledge or

information.
Example 1 →T: what shape is it? ((Teacher holds up a 4 × 4 × 4 cube composed of

wooden blocks))
2 Ss: cube.

Level III: Process Elicitation (PRE)
Criteria Asking students to explain or give opinions. It produces new information from

the respondent.
Example 1. →T: If we wanted to look at some different cubes, how

2. would we identify other cubes we would consider?
3. S: Number of like the pieces of tape. If it has like . . . like Cathy has it up,
4. if it has like three: intercept, edge, and face. Two pieces of tape: it’s

edge and face, and one piece of tape: it’s a face, just a plain face. Zero,
5. it’s a hidden.

Level IV: Metaprocess Elicitation (ME)
Criteria Asking the respondents to justify their own reasoning based on a prior

statement, or make a connection to an idea from a previous turn. It
encourages reflection by probing for justification of a statement made earlier
by the respondent.

Example 1. →T: You said subtract two then you said cube it. Why are you cubing
2. what you have left?
3. S: Because they’re ah, they’re, it’s not just one row. There’s . . . if we have
4. a side length of five, then there’s um (2.7) there’s three (3.0) ah, three
5. three top ones (1.4) no, I don’t know.
6. T: You’re on the right track
7. S:[ There’s..
8. →T: Anyone] what to (.) go ahead keep going.
9. S: There’s three rows of three. So it goes three, three and then three.

10. And then there’d be another row behind that one and another row behind
that one.

the teacher that probe for an explanation and interpretation that is initiated by the teacher (Level
III, Process Elicitation, PRE); and those that probe for the justification of a statement that
was previously made by the student, and is therefore asking the speaker to reflect upon his or
her earlier thinking (Level IV, Metaprocess Elicitation, ME). Although choice elicitations may
serve many roles, such as confirmation checks, the cognitive demands for making an acceptable
response (regardless of whether or not it is correct) are quite low. For example, the correct
answer to a CE (“A square has four equal sides, right?”) can be arrived at by guessing or
merely giving confirmation (e.g., Koshik, 2005), but an appropriate response to an ME (“Why are
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you squaring this difference?”) requires greater comprehension from the respondent and more
elaborate language production.

Following our classification scheme, as the cognitive level of the teacher-directed elicitation
increases, the mental processing needed to address the elicitation gets more complex. In Table
1 we provide our coding criteria and examples from our corpus for each level of cognitive
complexity. Inter-rater reliability for coding the levels of cognitive complexity for 25% of the
corpus was 94.4 % (Cohen’s kappa = .94).

In the final analytic step, student responses were independently coded as correct, incorrect,
partially correct (including partially complete), or neutral replies to the currently active elicitation.
Mixed choral responses with both correct and incorrect replies were coded as partially correct.

FINDINGS

Analysis of our corpus revealed 627 teacher utterances over the four class sessions. Of these,
551 (87.7%) were identified as teacher-directed elicitations. Non-elicitations made by the teacher
included evaluation statements, demonstrations of mathematical reasoning, and classroom man-
agement. We briefly summarize several analytically interesting patterns in the elicitation data
before we delve into the specific classroom dynamics.

Evidence of Teacher Regulation

The teacher used a variety of elicitation formats across the five categories shown in Table
2, including overt requests, calling students by name, providing prolonged utterances, and so
on. But asking questions (60.5%) and posing provocative statements (12.7%) clearly were the
dominant elicitation modes. We also found that the teacher provided prompts across the range
of the four-level hierarchy, which varied in frequency (see last row of Table 2 for totals). PE, or
product elicitation, was the most common form (over 40% of all prompts), in keeping with the
prevalence of calls for student recall and demonstrations of factual knowledge in the classroom,
even when in the service of more conceptual reasoning and problem solving. The teacher was
least likely overall (9.1% of the time) to prompt students for explanations (PRE).

In pursuit of our first research question, we examined how the cognitive level of each teacher
elicitation fluctuated, from one to the next, in reaction to student responses. As Table 3 shows, over
half the time there was no adjustment of the level of cognitive complexity from one elicitation
to the next. Among the remaining turns, we found that the elicitations moved upward in the
hierarchy about as often as they moved downward (see Sub-total row of Table 3), each 22% of
the time.

However, these adjustments in complexity appear to be related to the accuracy of students’
prior statements. Table 3 shows that when students made correct statements, the subsequent
elicitations were twice as likely to move up the hierarchy (48 times, over the 4-day corpus) than
down (24 times). When incorrect statements were made by students, the subsequent elicitation
was nearly twice as likely to move down the hierarchy (32 times) than up (17 times).

A 3 × 3 Chi square of the Correct-Incorrect-Partially Correct responses crossed with Up-Down-
No Change provided a test of the hypothesis that the teacher’s elicitation adjustment was related
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TABLE 2
The Frequency (and Percentage) of Each Form of Teacher Elicitation by Cognitive Levels

Cognitive Level
Teacher’s turns Total 628
Non-elicitations 77 (12.3%) 1 2 3 4
Elicitations 551 (87.7%) CE PE PRE ME

Questions
Total 380 (60.5%)a 116 159 27 78
Provocative Statements 80 (12.7%) 19 46 11 4
Prolonged Utterances 18 (2.9%) 1 15 2 0
Student Names 13 (2.1%) 1 6 1 5
Requests 22 (3.5%) 0 15 6 1
Back-channels/ Continuers 38 (6.1%) 0 18 9 11
Totalb 551 137 (21.8%) 258 (41.2%) 57 (9.1%) 99 (15.8%)

aPercentages are out of the total number of elicitations (n = 551).
bCell percentages are of row totals (n = 551).

to accuracy of students’ prior statements. The test showed that these variables are significantly
related, χ2(1) = 18.5, p < .001. Planned pairwise comparisons were evaluated with the Dunn
method controlling the family wide alpha level to 0.05. Responses that were mathematically
correct were more likely to be followed by an increase in the cognitive complexity of the next
elicitation then a decrease or no change. Incorrect responses were more likely to be followed by a
decrease in the cognitive complexity of the next elicitation than an increase, and marginally more
likely to decrease than show no change. This supports our prediction that the teacher elicitations
will systematically shift up and down the cognitive hierarchy based on the accuracy of students’
responses. It may be that these adjustments are conscious and intentional. However, this remains
a hypothesis because the present data do not allow clear resolution of this point.

TABLE 3
The Frequency (and %) of Elicitation Adjustments Up, Down or No Change, for Correct, Incorrect, and

Partially Correct Responses by the Students Over the Four Class Sessions

Adjustment to Elicitation

Up Down No Change Total

Accuracy of Students’ Correct 48 (45%)b 24 (22%) 74 (28%)
Responses to a Teacher Incorrect 17 (16%) 32 (30%) 47 (18%)
Elicitation Partially Correct 13 (12%) 19 (18%) 54 (21%)

Neutral or Others 29 (27%) 32 (30%) 89 (33%)
Sub-total 107 (22%) 107 (22%) 264 (55%) 478

Unadjusted Teacher Elicitations due to Absence of
Prior Student Responsea

74

Total Teacher Elicitations 552

aThe category Elicitations with no prior response are initial elicitations that do not follow from a prior response.
bPercentages are of column totals.
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TABLE 4
Frequency (and Percentage) of Each Type of Teacher Elicitation Used During Each Class Session (n = 551)

Cognitive Level

CE PE PRE ME Total

1st day 67 (31.3%)a 108 (50.5%) 16 (7.5%) 23 (10.75%) 214
2nd day 25 (28.4%) 29 (32.9%) 17 (19.3%) 17 (19.3%) 88
3rd day 25 (26.9%) 41 (44.1%) 9 (9.7%) 18 (19.4%) 93
4th day 20 (12.8%) 80 (50.6%) 14 (9.6%) 42 (26.9%) 156
Total Frequency 137 258 56 100 551

aPercentages are of row totals.

Having established the general elicitation pattern that included upward adjustments in com-
plexity following correct responses and downward adjustments in complexity following incorrect
responses, we can examine the changes over the duration of the four-day lesson. Table 4 shows
the relative presence of each elicitation level over time. Initially, PRE and ME elicitations are
relatively rare, and together make up about 18% of the teacher prompts. The proportion of ME
prompts grows from Day 1 to Day 2, remains steady on Day 3, and then grows again on Day 4.
PRE and PE are more erratic over the four-day lesson. CE, in contrast, shows a consistent decline,
slowly at first, but then drops considerably on the last day. By the final session, ME prompts
rose 16% points (a 150% increase), while the lowest-level CE prompts showed a corresponding
decrease of over 18 percentage points. These data suggest that there is an overall trend toward
increasing complexity in the cognitive demands of the elicitations over time, although there is
considerable variation within the elicitation categories across time.

Overall, there is evidence that the teacher adjusts his elicitations in a manner that appears
to be responsive to students’ statements. It is against this backdrop that we illustrate through
excerpts from the classroom discussions how teacher elicitations are regulated following students’
responses. In the first excerpt (taken from the beginning of Day 1) we show how the level of
complexity of teacher elicitations changes following students’ responses, illustrating the broader
patterns evident in the quantitative presentation of the data. The second excerpt, drawn from
the last day of the lesson, is used to illustrate how the teacher’s elicitations can serve as an
effective way to probe students to articulate the justifications behind their own mathematical
generalizations. In this way, Excerpt 2 shows the kind of interactions that contribute to the
highest order processing in our complexity hierarchy. These first two excerpts, then, serve to
illustrate the patterns evident across the entire data set. In contrast, the third excerpt (drawn from
the Day 3) shows a rare but important event. Here, the teacher uses an instructional strategy
to challenge students to recognize a mathematically incorrect assertion, and use counterfactual
reasoning to address the false statement and provide the correct assertion in its place.

Teacher Elicitations Adjusted from Lower Order to Higher Order

In this first excerpt we illustrate how the level of complexity of teacher elicitations changed
following students’ responses. Excerpt 1 comes from the beginning of the first day of the four-day
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lesson. Previous research (Verplaetse, 2000) established that teachers tend to move toward higher
levels of prompting when students successfully respond to CE and PE questions. Here, we
illustrate the complementary phenomenon: how the level of cognitive complexity of subsequent
elicitations is shifted downward when students struggle with the questions before them, when
the group shows discord, or when an answer is mathematically incorrect. The teacher’s follow-
up move has the effect of providing students with interactional scaffolding, encouraging them
to publicly present relevant information that is foundational for the topic at hand, and directing
students to solve a smaller, more accessible piece of the larger problem. In a similar way, we show
that when students provide information that is mathematically correct, the subsequent teacher
elicitations tend to increase in complexity, often serving to draw out elaborations of students’
ideas or elicit from them analytic justifications for their claims.

In Excerpt 1 (for notational conventions used in the excerpts, see Appendix B), the teacher is
holding a wooden cube composed of 64 (4 × 4 × 4) smaller blocks (for an illustration see Figure
1). The assembled cube is about twice the size of his hand and easily visible from the back of the
room. He orients students to the upcoming discussion on algebraic modeling of cubes of various
sizes by asking the students to name the wooden object he is holding. Below, each elicitation
made by the teacher is shown with the elicitation code (CE, PE, PRE, or ME) to the left.

Excerpt 1: Naming the Wooden Object That the Teacher Holds in His Hands
(Source: 5:29–6:24 of Day 1)

1. PE-1→ T: what is it?
2. S1: a thing of blocks=
3. PE-2→T:=a thing of blocks (0.4) ok, what shape is it (.)
4. Ss: cube

FIGURE 1 The anatomy of a cube as used by students in the class: The cube itself was made up of individual
blocks that played various structural roles on the finished cube, including: Edge cubes, face cubes, corner cubes,
and hidden cubes (not shown).
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5. S2: c[ube
6. S3: a square](.)
7. Ss: cube
8. PE- 3→ T: I just heard two answers (.) what shape is this (.)
9. Ss: CUBE

10. CE-4→ T: is this a square? (.)
11. Ss: no.
12. Ss: yes. yes. (.)
13. S2: well it’s a [square that is three dimensional
14. S3: the sides of it are] sq[uares.
15. S1: it’s a square cube]
16. CE-5→ T: the SIDES of it are squares,
17. S4: ◦square face◦

18. PE-6→ T: what would it. . . (0.7)
19. S1: it’s a dice.(0.7)
20. S3: it’s a [cube.
21. T: no, i]t is not a die.(0.8) It’s a cube. ()
22. ME-7→T: So, why is this not a square. (0.5) This is not a square.() Why is it not.
23. S1: ( )
24. S5: Because a square, when you draw a square on like a paper, you just draw equal sides,

but a cube it has eight or six.
25. PE- 8→ T: Has six what?
26. S5: a six flat sides, um, that are totally, that are totally equal and just a regular square has

one side on each face.
27. T: Okay.

Excerpt 1 shows how the teacher’s elicitations lead students initially to engage in lower-level
mathematical activities (e.g., to recall the name “cube”) but provides scaffolds that allow them
to eventually participate in higher order reasoning where they must justify their claims about
the differences between two-dimensional squares and three-dimensional cubes. For example, the
teacher started this new topic with a product elicitation (PE) question in Line 1 (“What is this”)
and probed students’ basic prior knowledge. Failing to get an appropriate mathematical response
in Line 2, the teacher narrowed down the focus with the second PE question (Line 3) by asking
“what shape is it?” This question succeeded in eliciting greater participation in this activity and led
students to externalize their correct and incorrect ideas (Lines 4 to 7). Although some students gave
the preferred response, the public exposure of misconceptions and inaccurate vocabulary (e.g., as
shown in Line 6) is one of the documented benefits of discourse-based instruction, as it supports
formative assessment (Nathan & Knuth, 2003) and creates an opportunity for re-teaching. This
mixed choral response was coded as partially correct for purposes of the quantitative analyses
that are summarized in Table 3.

Although S3 provided erroneous mathematical information in Line 6, the teacher did not
respond with negative evaluative feedback (Line 8). Rather, he reformulated the previous question
more specifically with a referential pronoun “this,” re-engaged students’ participation, and finally
elicited the loud chorus of accurate answers from students (Line 9). Notwithstanding the correct
responses, the lower level CE question in Line 10 functioned to target students’ erroneous
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responses from an earlier turn (Line 6), and provided one more opportunity for students to reflect
on and restructure their thinking. This elicitation technique played a crucial role in generating
additional participation from students, as Lines 11 to 15 show. Even though some students (e.g.,
S1) were still confused and generated inaccurate mathematical terminology, such as “squares,”
“square cube,” or somewhat incomplete responses, such as “square face,” the teacher continued
to present elicitations (e.g., Line 16, where he emphasizes SIDES), which encouraged students
to verbalize their thinking and led to at least one student (S3) to repair an earlier error (Line 20)
in much the same way as interactional scaffolding (Scollon, 1976).

We see the cognitive level of elicitation shift upward into the highest ME question in Line 22.
After receiving correct mathematical responses at the beginning of the excerpt, and infusing the
proper distinction between squares and cubes into the public discourse, the teacher went on to
probe the deeper reasoning behind the correct mathematical information. He appears to explore
the cube’s unique properties and contrast them with the properties of the square. When this
higher order ME question elicited a partially (but not completely) correct rationale from a student
(Line 24 and 25), we saw the teacher again regulating the cognitive complexity of his queries
down to a lower-level PE. The PE in Line 26 served as a form of mitigated feedback (Nathan &
Kim, 2006) and provided an opportunity for the student to externalize his own thinking and test
his claim, as described by Swain (2000). In the subsequent turn (Lines 27–28), the respondent
repaired his own error and provided the correct reasoning of how a cube is distinguished from
a square. Finally, this response received a positive evaluation (“Okay”) from the teacher in Line
29.

While one can see elements of the often-documented IRE sequence (Initiation by teacher,
Response by students, and Evaluation or Follow-up question by the teacher; see, for example,
Greenleaf & Freedman, 1993; Mehan, 1979; Sinclair & Coulthard, 1975; Wells, 1993), those
analyses are typically insensitive to the regulation of cognitive levels of the initiations in response
to student responses, or to the patterns that emerge over numerous initiation–response exchanges.
In this case, elicitation questions played an essential role in providing further opportunities for
students to verbalize their mathematical thinking, and to engage in (and also be witness to) more
sophisticated reasoning.

Follow-Up Metaprocess Prompts to Elicit Higher Order Ways of Thinking

The first excerpt portrayed the general pattern of the teacher’s regulation of cognitive complexity
based on the accuracy of student responses (as illustrated in Table 3). The second excerpt, taken
from the last day of the lesson, further illustrates this pattern, but specifically highlights the kind
of classroom interactions that contribute to meta-process thinking. This example illustrates how
the teacher probes for further justification of students’ unspoken rationale behind mathematically
accurate and inaccurate responses. This type of probe taps into the highest order of thinking
in our framework, where students are called on to justify their mathematical ways of thinking.
In these data, the metaprocess elicitation (ME) prompts draw out multiple explanations for a
formula that students generated and then used successfully, if somewhat blindly, to compute the
number of face cubes (i.e., the number of cubes that make up the outer surface area, excluding
those cubes that already make up the corners and edges; see Figure 1) for a cube of any side
length; that is, (side length – 2)2× 6. The various parts of the cube as referenced by the members



REGULATION OF TEACHER ELICITATION 107

of the class in this excerpt are illustrated in Figure 1. This selection portrays a more complicated
topic than the one shown in Excerpt 1, which is likely to contribute to more frequent occurrences
of higher order prompts. However, this seems appropriate as it comes from the final session of
the four-day lesson, after students have explored more sophisticated ideas as they modeled the
linear and nonlinear functions that describe the growth patterns of the various components of the
cube.

Excerpt 2: Reasoning Behind why Students Square the Number (Source:
16:04–18:21 of Day 4)

1. ME-1→T: Why are you squaring something? Why are you squaring the difference? Why are
you squaring this new number?

2. S6: It’s equivalent of multiplying it by itself.
3. ME-2→T: WHY?
4. Ss: (5.0) (No Response)
5. T: It might help you if you see some more squares. (0.3) Some more faces.
6. ((At the white board, the teacher fills in the entries of the table showing
7. PE-3→ face cubes with a red color)) Face cubes. Face cubes.
8. S6: Oh, oh, oh, oh, oh.
9. ME-4→T: Why are you squaring this difference? (.) Can’t really see the red, sorry. (Student’s

name)
10. S6: Um, so it’s the side length minus two for the first square would be one,
11. ME-5→T: Uh huh.
12. S6: and, and when it (indecipherable) the second square four, side length minus two would

be two.
13. ME-6→T: Uh huh.
14. S6: Then squared, two times two is four that would give you the first face. Multiply that by

six and you get all the faces. That’s why you square it.
15. ME-7→ T: I’m not sure I’m following why. I understand multiplying it by six all the faces,

but I didn’t follow why you squared it. I think I understood but I’m not sure I completely
followed it.

16. S6: You square it because that’ll give you the two. when you have a flat Square.
17. ME-8→T: uh huh.
18. S6: You multiply one side by the other side to get the area, (.) it’s just doing it backwards.

Squaring it to get the whole area.

In Excerpt 2, the teacher addressed students’ understanding of the meaning of the formula for
the number of face cubes for a cube of any side length. Face cubes must be counted exclusive of
edge cubes (Figure 1), so the number of edge cubes must be mathematically removed from the
side length when computing the number of square faces of the cube (hence, the expression (side
length – 2)). Because the number of face cubes needed to construct a cube grows with the surface
area of the cube, the number of face cubes is in quadratic relation to the cube’s side length (hence,
the need to square (side length – 2)).
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The teacher used open-ended ME prompts after students produced a valid formula for how
to calculate the number of face cubes. This had the apparent consequence of acting as a probe
of students’ reasoning about the formula, and its meaning with respect to the spatial relations
present in the cube. In Line 1, the teacher asked about the use of squaring. The student response
(Line 3) was generic; it applied to any squaring operation, but said nothing about why it was
warranted in this particular situation. Following this partially correct response from a student,
the teacher emphatically posed students with a direct question (Line 4), “WHY?” But even with
considerable wait time there was no response (Line 5).

In Lines 6–8, the teacher appeared to pursue an inductive path, asking students to examine
their tables of numbers (generated during prior pattern generalization activities in class and as
homework) and to look for patterns across the different size cubes. One student provided a kind
of “think aloud” account (Line 12) for the first entry in the table, a 3 × 3 × 3 cube, essentially
applying the formula that they are all being asked to interpret. It is clear that the student under-
stood how to apply the formula (Lines 12–19), and the meaning assigned to multiplication by
six (to “get all the faces”) in Line 18. The teacher provided back-channels “uh huh” (Lines 13
and 16), which seemed to indicate from a functional perspective that he was following and still
expected the ME prompt to be addressed; and the student obliged by providing further elabora-
tion. However, the student’s explanation for squaring was still inadequate from a mathematical
standpoint.

The teacher provided no negative feedback in response to incomplete responses until Lines
20–22. When the teacher did give negative feedback, it was in an indirect form: “I’m not sure
I’m following why . . . I didn’t follow why you squared it.” This feedback operated as another
ME question because it again invited the audience’s response to the question “Why.” Despite an
inaccurate explanation from S6 (Lines 23–24), the teacher did not provide a negative evaluation
or voice his own thoughts, but repeated a back-channel ME whereupon the student said more
about his thinking (Line 25). It appears that this form of interactional scaffolding chosen by the
teacher stimulated further involvement (cf. Nassaji & Wells, 2000). In fact, the student (Lines
26–27) took up the invitation and made public the important connection of squaring the side
length to compute surface area.

In pattern generalization tasks, students can find themselves developing formulae that simply
fit a numerical pattern—they make the numbers work procedurally—but students might not under-
stand structurally why they work, or what the mathematics is “saying” about the patterns involved
(Cai & Hwang, 2002). This is akin to Piaget’s distinction between simple abstraction—abstraction
drawn from the objects themselves—and reflective or reflecting abstraction—abstraction of in-
variant features drawn from the (physical and mental) actions performed (Piaget, 2001). The
latter requires the construction of new and more advanced cognitive structures (e.g., Ellis, 2007).
The long-term objective of algebra instruction is to develop in students the capacity for reflecting
abstraction and an appreciation of the meaning, utility, and properties of the ensuing mathematical
structures that model these abstract relations.

Excerpt 2 demonstrated how ME prompts can scaffold higher order mathematical reasoning,
particularly that of reflecting on the meaning of mathematical structures that a student created.
Each ME prompt appeared to provide a scaffold to move further out, beyond the original,
unassisted thinking and explore new and more complex mathematical terrain (Verplaetse, 2000;
Vygotsky, 1978; Walsh & Sattes, 2005).
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Making an Erroneous Statement to Elicit Counterfactual Reasoning

Excerpts 1 and 2 were chosen to be illustrative of the overall patterns evident in the data (Table
3). This final excerpt (drawn from the first quarter of Day 3), is chosen, not to exemplify these
general patterns, but to show a unique event that might otherwise go unnoticed. Excerpt 3 shows
how the teacher used an instructional strategy—the “trick question”—to engage students in the
classroom discourse and encourage them to think more deeply about the mathematics. Prior to
the events shown below, learners provided an accurate answer and a legitimate account of their
mathematical reasoning for calculating the total number of blocks needed to assemble a cube of
any particular side length. In so doing, they developed the formula for the volume of any size
cube. However, during an interview with the research team, the teacher related his concern that
students sometimes confound the idea of volume (the total number of cubes) with surface area
(the number of faces it takes to cover the outside of the cube). This seemed to be part of a broad
confusion between 2D and 3D properties of the cube evident in comments made during the first
day (when students were asked to name the cube), which persisted throughout the multi-day
lesson. While the teacher saw it as more prevalent among students from the earlier class period,
he was concerned it could be a latent misconception among some students in all his sections.
For this reason, he wanted to address this confusion directly. His approach is captured in the
following excerpt.

Initially, in the excerpt that follows, the teacher probed students for the meaning of their
formula for volume, (side length)3. The teacher then made an unusual, but deliberate shift: he
intentionally made an inaccurate mathematical statement—a “trick question”—designed to lead
students to recognize and challenge it using counterfactual reasoning and other higher order forms
of thinking. Using physical materials as well as verbal and nonverbal responses, we observed
students negotiating the mathematical concepts and finally demonstrating to the class why the
teacher’s proposal was, in fact, incorrect. In so doing, students provided an analytic distinction
between surface area and volume that had not been previously articulated, but satisfied the
teachers’ aims.

This example provides a valuable perspective of how regulation of the classroom discourse
can foster higher-level reasoning following a mathematically correct response. Furthermore, in
this example, we were privy to some of the curricular goals of the teacher, as articulated during
a debriefing session with the teacher after the lesson. Two days later, the teacher reviewed the
classroom videotape with the research team. In the context of this cued retrospective report, he
reflected that at the time he specifically wanted to present students with a compelling situation
that would illustrate the idea of volume in a way that decoupled it from the notion of surface area
(field-notes from week 8). Thus, for this exchange we are better able to view the events through
the lens of the teacher’s retrospectively stated intentions.

Excerpt 3. The Use of a Trick Question (Source: 9:46–10:45 of Day 3)

1. PRE1→T: I’ve had some people tell me that I can also count sixteen on the top and there’s
six sides so sixteen times six that’s ninety six cubes plus the middle, ninety six cubes plus the
middle, so the whole bunch of ones in the middle so that actually gets me up to one hundred
four I think cubes. One hundred four cubes.
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2. S7: that kind is cr↑azy↓
3. PRE2→ T: gets me up to one hundred f↑ou↓r I think cubes. one hundred f↑ou↓r cubes.
4. S8: that’s all right.
5. S6: if you did th↑a::t on each s↑i::↓de then you count the t↑o↓p then one of the sides, (.)

you’d be counting f↑ou↓r more over again.(0.3)
6. ME3→T: what do you mean counting four more over again. ((5 Lines omitted))
7. S6: see::. ((going to the front of the class and turning around the desk with the cubes)) see,

(pointing to a colored cube on the desk)
8. S1: I have something else.
9. S6: se↑e:: see::↑ count thi::s to↑p, (.) ((spreading horizontally his palm on the top layer))

and then you count one of the s↑i↓des you’re counting the four ↑edg↓es again. ((pointing to
each face of the cube with the palm))

10. T: a::h,
11. S1: but you don’t c↑ou↓nt the s↑i↓des. you count in l↑ay↓ers.
12. S6: yeah ex↑act↓ly.
13. T: [so, so
14. S6: sixt]↑ee:::n (0.3) times sixt↑ee↓n ((spreading his fingers horizontally on the top layer))

or sixteen times one times, two times, three ((indicating the second, the third, and the bottom
layer with the palm)) sixteen times f↑ou↓r ((indicating the top layer with his palm several
times)). there’s four l↑ay↓ers, so sixteen times four.

In this excerpt, the teacher was most overt in his goals of prompting deeper student thinking by
posing a provocative assertion that conveyed the intentionally erroneous idea (Lines 1–5) that the
total number of blocks making up the 4 × 4 × 4 cube was based on computing the surface area
(which is 96 square units) rather than the volume (64 cubic units). In addition, the teacher made
a second erroneous assertion (Lines 3 and 7–8), because he proposes further that they add the
volume of the hidden blocks that was previously established to the 96 square units, to make 104
blocks.

One student, S8 (Line 9), asserted that the teacher’s idea was correct, whereas another (e.g.,
S7 in Line 6) strongly disagreed. In subsequent turns (Lines 10 and 11), S6 argued against
the teacher’s reasoning based on structural considerations. S6 claimed that with the teacher’s
approach some blocks would be counted twice, which violated basic rules about counting. Thus,
S6 demonstrated very high-level justification against the teacher’s erroneous assertion, essentially
using a form of proof-by-contradiction.

In response, the teacher presented an ME question (Line 12), which drew out S6’s justification
of the mathematical statement made earlier (Line11). This prompted S6 to explain what he
meant by “counting four more over again.” S6 voluntarily came to the front of the classroom
to demonstrate why the teacher’s reasoning contained a conceptual error (Lines 13–14, 16–18).
This student used the physical materials as a representational tool to externalize his mathematical
thinking and provide common ground for all of the class participants. Gestures as well as speech
were employed to enact the conceptual reasoning. Specifically, the gestures pointing to the six
faces (Line 18) showed the shared edges between the faces where the teacher double-counted.
This information is acknowledged by the teacher in Line 19 (“a::h”), which serves as a receipt
of the new information (much like the expression “Oh”), rather than as a backchannel (Heritage
1984b).
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S1 initiated further repair to the teacher’s erroneous statement using verbal descriptions and
gestures to show that the double-counting problem would be avoided if they calculated the volume
using a layer-based system of counting (Line 20), rather than quantifying all blocks on each side.
S6 showed his deep understanding by accepting S1’s repair (Line 21) and appropriating it as his
own. With fingers and palm spreading out on the surface of the cube, S6 interrupted the teacher (the
overlapping speech at Line 22 was not acknowledged and therefore not coded as an elicitation)
and provided a reification of S1’s layer method (Lines 23 to 27). As a result, using iconic gestures
to denote the layered structure of the assembled cube along with the physical blocks themselves,
S6 and S1 were able to co-construct an argument that disproved the teacher’s erroneous claims.
Yet, pedagogically, the teacher’s use of a trick question as an elicitation technique was an effective
way to engage students in the discourse and prompted them to draw collectively on the knowledge
of their peers in order to exercise the deep and complex mathematical processing of which they
were capable, given the proper support.

In most circumstances an erroneous statement of this sort would constitute a violation of
Grice’s Conversational Maxim of Quality. However, in this instructional setting, a few students
took up the challenge, rather than condemning or questioning the teacher’s mathematical skill
or authority (although see Line 6). From a grammatical perspective, this false statement was not
technically an interrogative. But it’s utility, as evident in students’ responses, underscores the
need for a flexible definition of elicitation, as originally proposed by Mehan (1979). As a result,
the teacher effectively elicited evidence from students for and against the claim, and guided them
into counterfactual reasoning, which Piaget and his colleagues (e.g., Inhelder & Piaget, 1958)
identified as the most advanced form of logical reasoning. The counterfactual also led students
to make comparisons while applying previous knowledge to a new situation.

DISCUSSION AND CONCLUSION

In this era of educational reform that emphasizes the social and linguistic nature of knowledge
construction in the classroom (e.g., Baker, 2007; Cobb et al., 1993; Sfard, 2007; Wertsch, 1979,
1994), there is a pressing need to understand how teachers use classroom talk as a mediational
tool to foster higher order reasoning among students. Although there is extensive research that
focuses on teachers’ use of negative feedback in response to students’ erroneous utterances (e.g.,
Lyster, 1998; Lyster & Ranta, 1997; Nathan & Kim, 2006; Panova & Lyster, 2002), the analysis
presented here examines the instructor’s classroom talk as it relates to correct as well as incorrect
responses from learners.

Using both general patterns across the corpus and selected excerpts, we show how one teacher’s
elicitations mediated students’ mental processing by scaffolding the mathematical discourse in a
manner that helped them advance from the factual-knowledge level to higher, metaprocess levels
of mathematical thinking and speaking. When students gave inaccurate or incomplete answers,
the teacher seldom gave direct, negative feedback. Instead, subsequent elicitations usually made
reduced demands for the level of cognitive complexity needed to respond. This helped engage
students, while providing opportunities for context-specific instruction that filled apparent gaps
in students’ knowledge. In this way, lower order elicitations by the teacher helped to scaffold
student reasoning.
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The teacher appeared to regulate the level of discourse as a reaction to students’ successes
as well. He often increased the elicitation level when students provided responses that were
mathematically accurate. In this way, the teacher could assess the conceptual foundation upon
which students’ responses rested, and guide students to engage in more sophisticated forms
of reasoning (Nassaji & Wells, 2000). Presumably, this enabled students to “try on” the kind
of mathematical thinking that was ultimately expected of them, and to see what that form of
cognitive activity was like from the inside.

It is important to note that other factors may also contribute to the overall pattern observed,
such as the teacher’s goals to make increased demands for overt demonstrations of students’ more
advanced thinking over the four days. This account would be expected also to generate an overall
increase in complexity over the four days (Table 4). This is a reasonable hypothesis that we regard
as compatible with the regulation hypothesis. However, an account based on shifting goals by
the teacher does not, by itself, explain the micro-level adjustments of complexity documented in
Table 3. Indeed, if the goal of elevating the complexity were the sole impetus, we would expect
to see monotonically increasing complexity at the level of teacher elicitations over the arc of the
four-day lesson, regardless of students’ responses. This would not lead to the pattern of behavior
we observed. A more likely account posits that the teacher systematically regulated the level of
cognitive complexity of his elicitations in reaction to students’ responses.

Instruction of the sort reported here fosters a climate of discursive mathematical practice. At
the same time, expressing a plurality of views invites students to listen and publicly evaluate
multiple forms of mathematical reasoning and expression that might otherwise remain tacit.
Students in this kind of learning environment need to consider alternative perspectives (Greeno
& MacWhinney, 2006) and work in both intra- and inter-psychological realms to establish a
shared understanding (e.g. Lerman, 2001; Matusov, 1996; Nathan et al., 2007). As an example,
the teacher’s trick question from Excerpt 3 engaged students in evaluative reasoning and coun-
terfactual argumentation that cultivated higher level cognitive processes and led them to make
an analytical distinction between surface area and volume that might otherwise have remained
confusing.

Intentions of the Teacher

In framing our investigation and the findings of our study, we have tried to remain agnostic
about questions of whether or how the teacher’s intentions drive the regulation of the cognitive
level of the elicitations, or if these decisions are made without conscious awareness. We believe
that a compelling case for responsive discourse regulation can be made without recourse to the
teacher’s intentions. By way of contrast, we show that statements made by the teacher about his
curricular objectives when prompted with the video of Excerpt 3 offer some insights consistent
with the reform views of promoting conceptual thinking about the mathematical structures and
procedures that students generate. If we had to speculate, however, our position is that the teacher
is focused primarily on larger, executive goals than those that govern the regulation of individual
turns. The teacher appears to be motivated to instill in students a deep understanding of what
the mathematics says, and how the analytic structure must necessarily map to (in this case) the
patterns and physical structures of the objects under investigation. In this way, we take teaching
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to be highly strategic, in that teachers control their efforts and employ particular resources and
practices to achieve their objectives (e.g., Jones, Palincsar, Ogle, & Carr, 1987; Leinhardt, 1986).

Issues of Assigning Causality from within an Interactional Perspective

Causal inference is complex when addressing highly interactive phenomena, such as classroom
discourse. What, for example, is the antecedent for a feedback loop where successive exchanges
contribute to as well as influence an elaborate chain of events? Although we chose to focus
our analyses on teacher elicitations, it is clear that other investigations of these data could be
centered on students’ utterances. Indeed, the very analyses we offer show how bound up teacher
elicitations are to students’ statements, and vice versa. Because of this, we have tried to be less
forceful than we might otherwise be to attribute causality from antecedent teacher elicitations to
consequent student responses and forms of thinking. Others surveying similar kinds of data (e.g.,
Roth, 1996) have exhibited less restraint in imputing causality.

At the same time, we feel that some significant weight can be placed on the role of the teacher
and the teacher’s actions, while still acknowledging that there is no sole cause that can be isolated
to explain the events. That is, given classroom learning of mathematical reasoning as it normally
proceeds we can lend some support to the intuition that the teacher’s role was influential of the
classroom outcome. This interpretation is based, to a large extent, on our understanding of the
literature on institutional talk, which emphasizes its goal-directed nature and the asymmetrical
constraints that shape the contributions of participants (Drew & Heritage, 1992). In particular,
there are significant inequalities in the distribution of power, responsibility, knowledge, and
communication resources in instructional interactions (Drew, 1991). Yet this complex picture of
a dialectic process also highlights the need to tread carefully when ascribing causality.

A useful perspective on this is offered by Mackie (1980) in his distinction between conditions
and causes. Kaplan (in press) summarizes Mackie’s theory of causation along the following lines.
Causes take place in a causal field, which takes into account a host of factors that contribute to
the occurrence of an event. Consider that a set of factors reliably precedes the occurrence of an
event, such as observing students exhibiting a certain level of mathematical reasoning for the
first time. This set may be only one of several sets of factors, each of which provides alternative
ways of achieving the sought-after event. For example, one set may focus on socially constructed
discourse, and includes elements such as early and repeated attention to developing students’
active listening skills, carefully regulated teacher elicitations, students’ thoughtful responses to
the teacher and one’s peers, and sufficient class time spent on the topic of interest. An entirely
different pathway could outline a more didactic approach, such as a lecture on a class of worked-
out examples followed by individualized seatwork with worksheets that were then graded and
handed back to each student.

Note that each approach includes several constituent factors, none of which are sufficient
on their own to engender the event. Each set of factors (the socioconstructivist approach, the
didactic approach, etc.) is sufficient, but not necessary. And within each set, the constituent
parts (e.g., teacher regulation of elicitation skills, or hand-graded feedback) are neither necessary
(the outcome could be achieved by the components of an alternative set) nor sufficient. We
can also assume that each constituent part makes a unique contribution, and is therefore non-
redundant with the other constituents of the same set. If we could articulate all of the pathways
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to achieve the same event, then, taken together, the multiple sets or pathways serve as a condition
of that event that are both necessary and sufficient (Kaplan, in press) . Any single factor (e.g.,
teacher regulation) plays an important role in the overall chain of events, and serves as an “inus
condition” in Mackie’s (1980) terminology, because it is an “insufficient but non-redundant part
of an unnecessary but sufficient condition” (p. 62). In this sense, teacher elicitations operating
within this causal field are not considered causal, but are a vital condition for engendering the
behaviors exhibited by students in this classroom.

Although we do not have individual student knowledge or performance data to assess the
growth of each participant, we offer some speculation on how the regulation of teacher elicitations
may ultimately foster learning among students. The scaffolding provided by this teacher appears
to be highly responsive to the perceived state and current needs of the vocal members of the
group. Even when mixed responses were given among multiple speakers, the teacher most
often addressed the statements that signaled inaccuracies in student knowledge, which would
otherwise hamper the teacher’s ability to pose elicitations of greater complexity to the class
in the future. These general patterns of elicitations and responses lead us to entertain that the
teacher may be managing something akin to group-level Zone of Proximal Development, or
group-ZPD. This idea of group-ZPD has gained some attention in the literature (Guk & Kellogg,
2007; Nyikos & Hashimoto, 1997), but also has its detractors and critics (e.g., Wells, 1999).
Strictly speaking, ZPD is defined with the individual learner in mind (Vygotsky, 1978). Guk
and Kellogg (2007) lament this situation, however, and argue that an exclusively individualist
perspective on ZPD is untenable for teachers, who predominantly plan at the level of the whole
class or sub-groups. Ultimately, the proper study of group-ZPD would depend on data showing
teacher responsiveness for collective interactions, coupled with data demonstrating expanded
group performance following these interactions.

Conclusion

Classroom discourse serves as a window through which we can observe communication between
students and their teacher in their natural setting, and witness the social accumulation of knowl-
edge as embodied in changes in discourse structure (Cazden, 1988; Nathan et al., 2007; Sfard,
2007). These data present a brief portrait of some of the forms that discourse-based styles of
teaching can employ, and it reveals instructional techniques for regulating student participation
and cognitive functioning. This portrayal is necessarily limited, based on one teacher’s practice
during several contiguous days of a single, beginning-level algebra class. Yet cases of this sort
help us to develop the theory and methods necessary to study these behaviors in greater depth.
It is left to future studies to further advance our understanding of the relationship between class-
room talk and cognitive development more broadly, and to establish the extent to which these
instructional strategies are applied skillfully in classroom settings.
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APPENDIX A

Examples of Each Type of Teacher Utterance

NON-ELICITATIONS

Mathematical Statements
T: This is four by four by four.

Classroom Management
T: Listen [directed toward the whole class].

ELICITATIONS
Questions

S2: it’s 4 by 4 right? 4 by 4. And,
→T: Well I’m sorry, why do you say 4 by 4?
S3: because the four cubes.
S2: It’s 4 by 6
S3: What are you talking about?
→T: What’s 4 what by 4 what?
S: 4 cubes . . . one side . . . has four cubes in a row, by four cubes like that.
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Continuers and Back-channels
T: Look at your verbal rules, look at your equations. How could they have possibly come up

with the number ninety-six?
S: They took the side length um of nine . . . wait ten.
T: ten.
S: They subtracted two which equals eight.
→T: Uh huh
S: and then they timed . . . multiplied it by the twelve.
T: Which is:::
S: Well eight times twelve is ninety-six.

Provocative Statements
S2: I remember them, but I forgot.
→T: ok, you called them edges, you called them corners, I heard something else.
S3: Axis.

Prolonged Teacher’s utterances
S: Well the ones with three, just call them intercepts. The ones with two to just count the edges,

and the ones with one to just count the faces.
→T: Okay. So:::
S: So you don’t count the faces on the intercepts.

Calling a student by name
S: Add two . . . if you add two.
→T: Jason↑
S: Um, okay, you take the side length and you square it and you take that answer and you

multiply it by the side length again.
Requests to do something

S: like the points
→T: Here, come show us.
S: I can’t remember what they’re called but, it’s like this. Goes around there, there, there,

comes down here, there’s eight of them if you count them all.
T: Ah! Very good

APPENDIX B

Jeffersonian Notation Transcription Conventions Used in the Excerpts

[ Point of overlap onset
] Point of overlap termination

= No interval between adjacent two turns
(2.3) Interval between utterances (in seconds)

(.) Very short untimed pause
word Speaker emphasis
the::: Lengthening of the preceding sound

? Rising intonation, not necessarily a question
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, Low-rising intonation, suggesting continuation
. Falling (final) intonation

CAPS Especially loud sounds relative to surrounding talk
◦ ◦ Utterances between degree signs are noticeably quieter than surrounding talk
↑↓ Marked shifts into higher or lower pitch in the utterance following the arrow
( ) A stretch of unclear or unintelligible speech

(( )) Nonverbal actions






