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Modal engagements in precollege engineering: Tracking math and 
science concepts across symbols, sketches, software, silicone and wood 

 
 
Abstract 
 
Collaborative, project-based K-12 engineering education curricula like Project Lead the Way ® 
(PLTW) strive to integrate the knowledge and skills across the STEM fields to provide both 
college preparation with technical education. In PLTW, students engage with ideas and activities 
across a broad range of modalities, including: Abstract mathematical equations, graphs and 
diagrams; 2D design sketches, computer-aided design (CAD) and simulations; and material 
construction of devices in wood, metal, plastic, wire and silicone. Curricula designed around 
such a broad set of modal engagements are assumed to be beneficial to engineering learning, 
since they provide students with a varied set of contextualized encounters with ideas, 
representations, tools and skills that foster a rich and grounded engineering education. Studies of 
high school classroom learning and instruction across two multi-day units in mechanical 
engineering and digital electronics reveal that students struggle to see the interrelatedness across 
these modal engagements that are often apparent to curriculum developers and instructors. 
Analysis of instruction and classroom discourse drawings, gestures and physical constructions 
shows that the cohesion of mathematics concepts across modal engagements is something that 
has to be explicitly produced in situ and enforced locally by the participants. Modal engagement 
analysis reveals the consistent ways that teachers and students produce cohesion (1) by 
projecting to past and future modal engagements, and (2) by coordinating representations and 
materials that are simultaneously present during modal engagements. Together, projection and 
coordination create cohesion-producing opportunities to thread the mathematics through 
disparate representations, material forms and events. This work alerts us to the importance of 
explicitly addressing the need to produce and enforce cohesion across the range of material 
forms, representations and activities that students confront in typical learning experiences. 
 
 
Motivation 

 
The pool of engineers in the United States is neither large enough nor diverse enough to meet the 
current needs of a growing, high-tech, global economy1. Yet the “talent pool” among many 
sectors of the population goes largely untapped2. As Legand Burge, Dean of the College of 
Engineering, Architecture and Physical Sciences at Tuskegee University, one of the nation’s 
premiere Black colleges, noted, “there needs to be more of a national commitment to improve 
the teaching of technology” at the high school level in order to promote engineering3. This means 
that reform of engineering education must address not only the design of post-secondary 
programs, but of K–12 education as well. 
 
Along with a growing urgency for promoting student understanding of the individual facets of 
science, technology, engineering and mathematics has come a drive to reconceptualize 
instruction in terms of STEM integration that would break down traditional curriculum “silos.”4  
This emphasis is in response to several sources: Learning Sciences research aimed at fostering 
greater transfer of knowledge5; federal initiatives, such as “Race to the Top”6; and new policy 



   

documents7  and federal laws. One influential law is the 2006 Reauthorization of the Perkins 
Career and Technical Education Act8 , which mandates that technical education and academic 
math and science topics must be integrated “so that students achieve both academic and 
occupational competencies" with substantial funds allocated "to provide vocational education 
programs that integrate academic [math and science] and vocational education.”  
 
Many commercial K-12 engineering curricula have taken up this mandate toward STEM 
integration9 . One of the most broadly adopted programs is the Project Lead the Way® (hereafter 
PLTW) high school program, Pathway to Engineering, a four-year, pre-engineering curriculum 
intended to be integrated into the students’ academic program of study. PLTW is affiliated with 
over 30 nationally accredited colleges of engineering, such as Rochester Institute of Technology, 
Duke, San Diego State, and Purdue10. It offers seven high school courses accredited for college 
credit. The PLTW high school pre-engineering program has been adopted by over 15% of US 
high schools, and is present in all 50 states.  
 
PLTW explicitly strives to integrate students’ college preparatory and technical education 
programs of study11. As PLTW states in their marketing materials: “The combination of 
traditional math and science courses with innovative Pathway To Engineering courses prepares 
students for college majors in engineering and E/T fields and offers them the opportunity to earn 
college credit while still in high school”12 . Indeed, the NRC report, Rising Above the Gathering 
Storm13 explicitly identifies PLTW as a model curriculum for providing the kind of rigorous K-
12 materials needed to improve math and science learning and increase America’s technological 
talent pool. Given the broad market penetration, affiliation with institutions of higher education, 
including provisions for college credit, and commitment to an integrated program across 
academic and technical education curricula, PLTW is an important exemplar for studying the 
degree to which integrated, and conceptually based pre-engineering programs are implemented 
in public high school classrooms. 
 
The Research Focus  
 
The focus of this research is to develop the theoretical and methodological tools for describing 
the STEM integration process and articulating the curricular expectation, students’ struggles and 
teachers’ remedial efforts to foster cohesion. The approach taken here is to examine instruction 
as it unfolds in the classroom setting. Video (often 2 cameras per session) serves as the primary 
data source, which is then systematically coded and analyzed to highlight the rich interactions 
with math, science and engineering concepts and representations used throughout the classes 
This study draws on video from two high school classrooms during multi-day units in 
mechanical and electrical engineering to help support generalizations of the findings.  
 
The Need and Challenge of Enacting STEM Integration 

 
Engineering education at the K-12 level in curriculum programs such as Project Lead the Way 
(PLTW) is often organized as a collaborative, project-based experience where students encounter 
ideas and activities across a broad range of modalities, including: Abstract mathematical 
equations, graphs and diagrams; 2D design sketches, computer-aided design (CAD) and 
simulations; and material construction of devices in wood, metal, plastic, wire and silicone. 



   

These occur within a broad range of participation structures, such as lectures, individualized 
work and small group collaboration as they take place in a variety of physical settings, including 
traditional classrooms, laboratories, wood and metal shops, and out in the field. Curricula 
designed around such a broad set of modal engagements are assumed to be beneficial to learning, 
since they provide students with a varied set of contextualized encounters with ideas, 
representations, tools and skills that foster a rich and grounded engineering education. A modal 
engagement is defined by Hall & Nemirovsky (2010, p. 1) as “an activity someone participates 
in, with others, tools, and symbols”14. Examples of modal engagements include: working with 
notational systems, equations, and diagrams; working with digital media, such as software 
simulations and electronic circuits; working with raw materials such as metal and wood; and 
working with designed objects and measurement instruments. Different modal engagements 
elicit different participant structures, such as classroom lectures, computer lab work, small group 
work, woodshops, etc. 
 
There are many opportunities for pre-college engineering students to connect science and math 
concepts across a range of representations, procedures, and material instantiations. Within this 
framework, a fundamental challenge in STEM education is that learners must recognize the 
inter-relatedness of ideas across a broad range of modal engagements and realize how concepts 
encountered in one form (e.g., an equation) relate to those same concepts encountered elsewhere 
(e.g., in a 3D device).  
 
Yet K-12 students can struggle to see the interrelatedness across these modal engagements that 
are often apparent to curriculum developers and instructors. There is some evidence that students 
do not readily make connections across different modal engagements. For example, in pre-
college engineering classes many students struggle to integrate previously encountered geometry 
concepts in activities such as computer-aided design (CAD) or measurement activities15 . 
Analyses of standardized tests also show that many students who take pre-college engineering 
courses show no demonstrable advantage in science achievement scores than their peers, while 
advantages in math achievement are only found among those in higher socio-economic 
communities16 and specialized programs of study17,18. Thus, while the opportunities for 
conceptual integration and transfer abound, there is little evidence that engineering courses are 
fostering the integration needed to benefit a great many prospective engineering students.   
 
Recent investigations of engineering curricula, classroom instruction and student achievement 
point to the challenges of realizing effective STEM integration in K-12 education. Content and 
alignment analyses of the 2004 PLTW curricula showed that while many mathematics content 
standards were in evidence among the three PLTW foundations courses--with more standards 
and more sophisticated standards in place in later courses--those standards that were addressed 
were seldom made explicit to the students in the curriculum materials; rather they remained 
implicitly embedded in the activities, instruments and software used to carry out the tasks19.  
 
Along similar lines, The National Academy of Engineering conducted far-reaching analyses of 
22 elementary, middle and high school pre-engineering curricula, including nine high school 
programs20 . The analysis explored the mission and goals of each curriculum; the presence of 
engineering concepts; and how each curriculum explicitly treated mathematics and science in 
with regards to engineering problems. Their remarks to date are most striking about the shallow 



   

role of mathematics often observed across the corpus of curricula. In findings that echo the 
studies of PLTW curricula, Welty and colleagues21 lament “the noticeably thin presence of 
mathematics” across K-12 engineering curricula (p. 10). They explained, “Most of the 
mathematics in engineering curricula simply involved taking measurements and gathering, 
organizing and presenting data. Very little attention was given to using mathematics to solve for 
unknowns. Furthermore, little attention was given to the power of mathematical models in 
engineering design” (p. 9). 
 
Analyses of the engineering curriculum materials address the intended curriculum, that is, the 
idealized vision of the curriculum design put forth by designers in the printed materials used for 
the course. Yet, it must be noted, curricula are generally not implemented as planned, and may 
not even unfold the same ways under the guidance of the same teacher in different class sections. 
Consequently, analyses of the intended curriculum paint a foundational but incomplete picture of 
a course that gives so much attention to in-class group project work. To address this 
shortcoming, Porter and colleagues22 distinguish the intended from the enacted curriculum. The 
enacted curriculum refers to the specific content as it is actually taught by teachers and studied 
by students during the course of learning and instruction.  
 
Analysis of the enacted curriculum provides an inherently richer account than the intended 
curriculum since its object of focus is the actual teaching and learning behaviors and student-
teacher and student-student interactions. For an investigation of the enacted curriculum, it is 
necessary to work from primary observations in the field and videotaped records to determine the 
events and interactions that occur during teaching and learning. Classroom observation is 
especially important given the practical nature of this course and the emphasis on project-based 
work and peer collaboration.  
 
Understanding the Nature of Students’ Struggles to Integrate STEM Concepts  

 
Given the high expectations and rather equivocal findings for pre-college engineering education 
on science and math achievement, research is needed to understand the challenges students face 
in establishing and maintaining cohesion across the range of science and math concepts or their 
changing nature as they are manifest in different modal engagements. Currently there is little 
systematic study of the challenges students face in building cohesion across the many modal 
engagements commonly encountered in engineering, or the manner in which cohesion over a 
range of shifting material and representational forms is established and maintained in the 
classroom. We focus our analyses on the cohesion of mathematical concepts as they are manifest 
across the range of modal engagements in multi-day engineering units. Our focus on 
mathematics within engineering is informed by views from engineering education scholars like 
Schunn23, who argues that math is “the language of physical sciences and engineering sciences” 
and as such is especially “critical” to achieving synergy across STEM fields.  
 
In accounting for the cohesion of mathematical ideas across such a broad range of STEM 
activities and education settings, there appear to be two distinct but interrelated objectives. First, 
we need to be able to locate mathematical ideas over time as they appear in various places, 
people and material forms. Second, we must describe what is invariant about the mathematics as 
it morphs across forms, activities and settings.  



   

 
Locating the Mathematics in Various People, Places and Things: The Where of Mathematics 
 
In this paper, we examine two cases drawn from our observations of multi-day lessons from high 
school engineering courses to illustrate how teachers and students manage the process of 
realizing concepts across distinct modal engagements. As a way to introduce the theoretical 
framework that guides our work, and the research methods we employed, we briefly present the 
issues in the context of the first case,, a portion of a multiday lesson on ballistics, where the 
students use math (trigonometry and algebra) and physics (kinematics) to calculate the distance a 
projectile will travel. Students then make design sketches and, ultimately, devices to launch a 
ping pong ball and test their predictions. The second case is drawn from a Digital Electronics 
class, the third course in the Project Lead the Way curriculum, in which high school students 
attempt to realize a set of logical relations for monitoring privacy for voting booths. Students use 
truth tables to generate any of a number of Boolean Algebraic expressions, which are first 
simulated using computer software that constructs virtual digital circuits, and then hardwired and 
tested as a working electronic circuit.  
 
Consider, as one of our examples, a typical engineering unit on building ballistic devices to hurl 
an object at a target at an unspecified distance (Figure 1). During this multiday lesson students 
need to understand a lecture on the physical laws governing projectile motion expressed in 
algebra, geometry and trigonometry; create, critique and revise 2D design sketches; use 
materials, measuring instruments and tools (both handheld and power tools) to construct the 
device; compile measurements during testing and analyze them; and so on. Each phase calls for 
one or more material forms, representations or tools to take center stage; each may be scheduled 
in a different space (wood shop, classroom) or classroom configuration (lecture, small groups); 
and each has a historical relationship with the events it follows and precedes24. By identifying 
where the mathematics is located, we establish its existence and describe its dynamic nature and 
the actions needed to maintain cohesion across its many manifestations.  

 

 



   

 
 

 

 

  

 

 

Figure 1. (a) (Top 2 panels) The mathematics and physics of kinematics that model ballistic motion must 
also be connected to (b) (middle 2 panels) the 2D design sketch, and (c) (bottom 2 panels) the 
construction, testing, and redesign of the ballistic device. Note that the teacher attempts to connect the 
design sketch to the wood in the construction phase (left panel), but the student focuses on the wood, to 
the exclusion of any cross-modal connections (right panel).  
 
Transitions between Modal Engagements 

 
The process by which teachers and students manage the transitions across changing contexts 
while maintaining cohesion within curricular activities is both complex and precarious. The 
teacher and the students must continually manage and negotiate this process; and to do so they 
rely heavily on language in the form of speech, writing and gestures. Speech provides cohesion 
by using resources such as labels and explanations. As will be made clear from the cases below, 
however, simply referring to mathematical ideas using consistent labels across different contexts 
is not sufficient for most students to establish the cohesion necessary to complete their projects 
and to develop a clear understanding of how the mathematics permeates the various activities 
and representations.  Teachers respond to this challenge by providing visual scaffolding, 
including written inscriptions such as equations, diagrams and words, created in situ or obtained 
from curriculum materials, that reify concepts, relationships and plans, in a manner that is 
(relatively) enduring. Teachers also use gestures to establish and maintain cohesion. They do so 
by linking ideas and visual elements, either with sets of pointing gestures or with gestural 



   

catchments25 that involve repeated hand shapes and movements that can signify, and thereby re-
invoke, previously referenced ideas and events26 27 .  
 
We have identified three ways that transitions among modal engagements are co-produced by 
teachers and students. One is that the participants make an ecological shift, which involves a 
reorientation of the activity context that can include different spaces, tools, media of instruction, 
and participant structures. At its surface, the shift can simply appear as a change in the activity, 
as, for example, when the digital electronics teacher called the class to stop their computer lab 
work and focus attention on the board. Alternatively, the shift may be more momentous, as when 
the engineering teacher took his students from the classroom, down the hall, to the wood shop, 
which altered the norms of proper (i.e., safe) conduct, the tools at their disposal, ambient sounds, 
and the participant structures, while also placing what had previously been plans for the future 
into the present task of implementing the proposed designs. Ecological shifts are not mere 
changes in context but transitions that can potentially alter many of the modal engagements.  
 
A second transition process, projection, involves the use of language to connect events of the 
present to past or future modal engagements. Past projections can link across an ecological shift 
that has already occurred, while future projections can anticipate a coming shift in the 
instructional ecology (one that may even be part of the curricular design). Projections can take 
many forms. Some are brief utterances or simple pointing gestures, as when a teacher points to 
an empty white board to re-invoke the mathematical derivations from a prior lesson. Others are 
much more protracted, as when a teacher spends an entire introductory lesson planning the lab 
work for the rest of the week. Teachers and students use the verbalizations and gestures of 
projection, along with representations, objects, and the environment itself, both to reflect upon a 
history of a concept as it unfolds in their classroom, and to plan for future manifestations of the 
concept in different modal engagements. Ecological shifts – common as they appear to be – 
make it challenging for participants to preserve a sense of the cohesion and continuity of the 
mathematical ideas. Projections serve to construct connections over time and help to establish 
that sense of cohesion for students. 
 
A third transition process is coordination, which involves the juxtaposition and linking of 
different material and representational forms. For example, students may coordinate a design 
created in a software environment with an actual device they are building, or they may enact 
coordination between symbolic and tabular representations of the logic of a digital circuit. When 
speakers integrate across time and material and representational forms simultaneously -- as when 
they make a connection from a device in their immediate context to a previously encountered but 
now absent equation -- we consider this both coordination and projection. We also recognize the 
occurrences of intra-modal actions as encompassing activity with a single material and 
representational form that is uncoordinated with any other forms. 
 
Identifying Locally Invariant Relations: The What of Mathematics 

 
 In addition to identifying where the math is located and describing transitions between modal 
engagements, it is important to be able to say what is the mathematics across shifting social 
configurations, physical settings and material and symbolic forms. We have found that the 



   

stability of the mathematical content across contexts and forms is something that has to be 
produced and maintained “locally” to the agents, time and context.   
 
A complete answer to the question of “What is mathematics, really?” is elusive28. The view that 
mathematics is formal, abstract, and disembodied, yet still a real and transcendent feature of the 
objective universe, has been characterized by Lakoff and Nunez as the “romance of 
mathematics” . Yet this position neglects the pragmatics of math, including the manner in which 
terms and concepts have shifting meanings and ways that categorically related entities may share 
only a portion of the defining criteria. It also marginalizes the social and cultural influences on 
the origin of mathematics and the manner in which it is archived, taught and applied32. Another 
perspective, espoused by Aristotle, is that mathematical objects are not distinct from physical 
objects, but instead are physical objects considered in a particular, abstract way33 .  
 
Noble and colleagues34, characterize mathematical concepts by what people do mathematically35, 
rather than the syntactic, or form-al, qualities. The criteria for membership in a mathematical 
category, in this view, are not pre-defined or rigid, but come instead from family resemblances 
that people register because of the “complicated network of similarities overlapping and 
crisscrossing”36 that characterize their relationships. From this perspective, cohesion of meaning 
across modal engagements comes from the many inter-relations between forms and experiences 
that share (sometimes implicit) characteristics and differ in others, just as “the strength of the 
thread does not reside in the fact that some one fibre runs through its whole length, but in the 
overlapping of many fibres” 37. Thus, cohesion of mathematical meaning and practice can occur 
because of the ways that people develop and employ family resemblances across the range of 
lived experiences and material and representational forms38 (Noble et al., 2001).  
 
However, none of these perspectives seem to account for the normative character of knowledge 
within scientific communities. Mathematical knowledge is neither totally over-determined as 
autonomous and universal, or totally underdetermined--created, so to speak, as each participant 
notices a unique configuration of similarities. Between these two poles lies the context of the 
STEM classroom, where the communication and enforcement of family resemblances is an 
interactional achievement that is often only partially successful.  Often within STEM fields 
relations are made by expert practitioners because of taken-as-shared understanding of the 
underlying mathematical models (e.g., second order linear constant coefficient differential 
equations; see Appendix A), which, when properly applied across seeming disparate forms (e.g., 
electrical circuits versus mechanical systems), generate accurate, quantitative predictions in 
either domain. Thus, expert practitioners (such as mathematicians, scientists, and engineers) 
establish cohesion even when the conventions do not exhibit family resemblances. An 
empirically informed account of learning and instruction has to address the obstacles students 
face in taking up these conventions, documenting the resemblances made spontaneously by non-
experts, as well as the contributions made by instructors and those that occur in curriculum 
materials and classroom activities.  
 
It appears for our purposes, that essentialist, romantic and family resemblance views of 
mathematical concepts are insufficient for framing the study of Western science classrooms 
where authoritative voices from the course curriculum and the instructor assume the existence of 
invariant properties tied to specific concepts, and these concepts must be learned and applied 



   

during high-stakes assessments to satisfy state and national standards. There may be powerful 
arguments why these invariant relations do not really exist, or do not hold in general. But there 
seems to also be a need to acknowledge that in more constrained circumstances -- specific 
relations in specific contexts brought forth to achieve specific curricular goals -- trained 
practitioners in STEM fields can identify locally invariant qualities of ideas even as they 
transition across modal engagements, and work to establish and maintain these relations. Like 
the temptation to declare a “flat Earth” when constructing a house, activities sufficiently 
localized in space and time can provide mathematical experiences that sufficiently approximate 
the invariant structures posited by the essentialists, but with an understanding that the dynamics 
of these modal engagements are central to the mathematical experiences of students and 
ultimately influence how they represent and enact their experience-based knowledge.  
 
From our perspective, the cohesion of mathematical concepts cannot be assumed in STEM 
curricula, and the means for creating cohesion across modal engagements are neither obvious nor 
universal. Novices operating in STEM classrooms and workplace environments need, rather, to 
be socialized into perceiving the same invariants that are salient to experts. Consequently, we set 
out to show that the cohesion of mathematical knowledge across contexts is something that 
has to be produced and enforced locally by classroom participants.  As noted by Noble and 
others, the meaning of a concept changes across contexts because the network of relations 
changes – this is part of the reason for locating concepts in different contexts. The sense of 
cohesion of a concept across modal engagements can be produced through the local management 
of talk and action. Our position, then, is a pragmatic one in that we understand this stability to be 
a property not of the math itself, but of something that is produced in the context of normative 
mathematical and scientific discourse practices. 
 
For our current purposes, we assume that what is taken as locally invariant in each manifestation 
of the mathematics is some kind of central relationship. Following Hall and Nemirovsky39, this 
does not mean that the mathematical concepts of concern are amodal, or without form or 
physical properties; as we will illustrate, the mathematics as it is experienced and practiced by 
teachers and students is highly subject to the modal engagements in which it arises. Yet, there are 
common relations evident in each modal engagement that can be analogically or metaphorically 
mapped to other modal engagements. People performing a mathematical activity can perceive, 
maintain, and even construct locally invariant relations by using relation- and inference-
preserving cognitive mechanisms such as analogical mapping and conceptual metaphor40.  
 
We posit that many aspects of curriculum and instruction in STEM education exist in 
order to engage relation-producing mechanisms with the goal of advancing students’ 
perceptions of locally invariant properties so that they serve as a cohesive thread 
throughout the STEM activities. An example of a locally invariant relation comes from the 
projectile motion unit for a high school engineering class we introduced earlier, where there is a 
need to characterize theta, the angle of ascent, across a range of modal engagements (Figure 1). 
In the classroom, we may observe the locally invariant relation in several ways; a raised arm to 
the base of a triangle, a Greek symbol, a numeric measure, a tangent line meeting a plane, and 
the relation between the trajectory of an object and the ground, as theta is realized, respectively, 
by the flight of a ball, a lecture, an equation, a sextant, or an idealized diagram in analytic 
geometry. By focusing on relations as the what of mathematics we direct our efforts at 



   

understanding the nature of the relations, the entities that are in relation, and how the relations 
are captured or expressed in representations, in communication using speech and gesture, and in 
the functioning of constructed devices.  
 
Focus of Research 

 
The analysis that follows focuses on how mathematics is “threaded through” various modal 
engagements – specifically, how classroom participants establish cohesion with locally invariant 
mathematical relations (the what of mathematics) as they are projected and coordinated 
(transitioned) with various modal engagements (the where). Within this framework, we set out to 
address one primary research question: How are mathematical ideas (relations) realized 
within and across modal engagements as they occur in STEM classrooms? We explore this 
question in two classroom cases. In the final section we consider the educational implications of 
this work, particularly the challenges it presents to teachers, learners and curriculum developers 
seeking to foster STEM integration.  
 
Theoretical Framework: Striving for Cohesion Across Modal Engagements 
 
In addressing our research question, we focus on both the where and the what of mathematics, as 
discussed above. In addressing the where of mathematics, we consider how mathematical 
concepts are realized in a given modal engagement across forms, time and space, and we also 
consider the affordances and constraints that each modal engagement exhibits for reasoning 
mathematically. Within this inquiry, we examine a broad range of behaviors and contexts, such 
as the nature of social interactions in instruction (lectures, coaching) and student discussions 
(investigations, explanations and elaborations, questions, design decisions); the role of artifacts 
(designs, tools, devices) and symbol systems (language, symbolic, algorithmic and visual 
representations); changes in the learning environment; and the development of ideas and 
practices over time, including the history, present focus and future planning across various 
phases of a classroom unit.  
 
We also address the what of mathematics, by exploring how mathematical relations are 
preserved when they are manifest in markedly different ways. The analysis of cross-modal 
behavior foregrounds the intended (i.e., expert) taken-as-shared, locally invariant nature of 
mathematics as a normative relation among entities regardless of their outward form. Together, 
the investigation of cross-modal and modal-specific behaviors will be used to characterize how 
perceived invariant mathematical relations are socialized by STEM practitioners (i.e., teachers 
and curriculum designers) and how the invariant relations are realized within and across modal 
engagements. This investigation raises important questions and insights about how mathematics 
both facilitates and obfuscates the integration of concepts across scientific fields.  
 
Coordinating the many manifestations of mathematical relations across modal engagements is 
the hallmark of STEM integration, and is central to professional practices41 42. To the student, 
however, the locally invariant qualities of a particular mathematics concept may not rise above 
the din of variation. Consequently, there may be a tendency for students to provincialize the 
mathematics, confining it to the salient, local, present forms that characterize their immediate 
experiences. Under this view, students are likely to develop a very narrow sense of the math, 



   

which limits their actions, talk and ways of representing and reasoning about the concepts – what 
we call their epistemological commitments. Epistemological commitments that are highly 
provincial tend to highlight salient properties of the currently available settings and 
representations, while neglecting connections to knowledge, practice and representations that are 
not immediately apparent. This provincialized sense of mathematics contrasts sharply with the 
dominant ideology that scientific and mathematical knowledge are statements of autonomous 
principles of the world that humans have struggled to perceive and understand through the 
history of knowledge, and that this knowledge portends a world that is regular, predictable, and 
rational. This more global epistemological commitment is an overarching goal of STEM 
education, and it is part of the socialization process of becoming a competent member of an 
information-, technology-, and science-saturated society.  It is also a basic part of the 
socialization of scientific and technical experts in our society. 
 
The occurrence of provincialized epistemological commitments poses a serious challenge for 
STEM education, for, as we have seen, mathematical ideas arise in a variety of forms, settings, 
activities and personal interactions. It is often the case in engineering design, for example, that 
certain mathematical ideas – key relationships between quantities – must be under the control of 
a user or another device and must therefore be identified as parameters of the system. The 
control of the parameter then becomes a central design consideration that drives the kind of 
mathematical models that are used, the nature of the final product, and the means by which 
performance of a device is evaluated. In the case of the ballistics unit, students striving to hit a 
target at a specific (but as yet unknown) distance will need to enact the kinematics of projectile 
motion by manipulating the angle of ascent, theta (Figure 1), on their devices. This central 
parameter must therefore be realized in each representation and material form that students 
encounter: mathematical diagrams and equations, body-based enactments and discussions of the 
device behavior, design sketches, and wood and metal assemblies.  
 
To foreshadow, our analysis identifies tensions that arise between the provincial, modal-specific 
epistemological commitments that naturally arise for students, on the one hand, and an 
integrative system that threads invariant mathematical relations across different modal 
engagements as is characteristic of professional practice and expected in curriculum objectives, 
on the other. This includes how ideas are projected forward and backward in time, and how they 
are coordinated across different spaces (classroom, computer laboratory, wood shop), different 
material and representational forms (symbols, drawings, wood and plastic), and different 
participation structures and social practices (e.g., those that occur in a metal shop versus in the 
classroom). Our analyses suggest that students are highly prone toward material- and 
representation-specific forms of gesture, talk, representation and tool use, which may signal 
highly provincial epistemological commitments toward the task. That is, students tend to focus 
on qualities that are immediately present and salient, treating each material and representational 
form as existing in isolation, historically and semantically, from the other forms that precede, 
follow and coexist with it. Teachers may actually contribute to these provincial commitments in 
that they, too, at times, model provincialized epistemological commitments for their students. 
 
Teachers are also charged with providing coherent educational experiences and teaching students 
how to integrate these forms so they can reason, imagine, act and talk flexibly across them. Thus, 
we observe that teachers can keep the mathematics salient in each form while also “threading 



   

the ideas through” the modal engagements. When these instances occur, we see the teacher 
overtly (and sometimes covertly) coordinate math concepts across modal engagements. Teachers 
often highlight locally invariant relations by referring to them using labels and gestures, or by 
invoking them directly. This seems to be done in order to establish for students cohesion across 
the project activities. It also may strengthen students’ understanding of the mathematics.  
 
Method 
 
We conducted multiday observations of teaching and learning in two different high school 
courses: Principles of Engineering (mechanics, 4 days) and Digital Electronics (circuit design, 4 
days). We refer to our procedure for identifying these different transitions as “modal engagement 
analysis” and characterize it as a methodology for analyzing teachers’ and students’ activity in 
terms of modal engagements occurring within ecological contexts. For the purpose of our 
analysis, we define a modal engagement as an interaction between participants surrounding one 
specific concept, procedure, topic, or problem. For example, in the digital electronics case, 
instances of modal engagements are: students solving a Boolean algebra problem on a 
worksheet, modeling an AOI diagram on MultiSims, and debugging a digital circuit using a truth 
table. By analyzing the different modal engagements that occur as activity in engineering 
classrooms unfolds, we can see how teachers and students enact projection and coordination 
between material and representational forms to manage cohesion of math concepts across 
ecological shifts.  
 
Videotapes of these classrooms were collected (with 2 camera views for each class), and the 
videotapes were transcribed and coded in Transana v2.41. We then identified segments of 
discourse within the lessons that manifested ecological shifts, coordination, and projection, as 
described above. The criteria used to code transitions are shown in Table 1. 
 
Table 1. Coding criteria for modal engagement transitions 
Transition Coding Criteria 
Ecological Shift Evidence of a major reorientation of classroom activity to involve different 

settings, participation structures, representational and material forms, tools, or 
actions (i.e., different sets of modal engagements). 

Projection Evidence that participants refer to an absent (past, planned or imagined) 
modal engagement. 

Coordination Evidence that participants link two or more co-present material or 
representational forms. 

Projection + 
Coordination 

Evidence that participants make a projection to an absent engagement while 
also linking this engagement to a currently present material or representation. 

 
Results From Modal Engagement Analysis: Two Case Studies 

 
A key goal of project-based learning (PBL) in engineering classrooms is to engage complex 
problem-solving skills and reflective processes in teacher-guided, contextually rich, goal-
oriented settings43. In the course of PBL, learners encounter, experiment with, and even 
rediscover important abstract relations that developed over the history of math and science 
practice.  Students’ uses of tools, representations, materials and forms of talk facilitate the 



   

construction of new objects that are themselves realizations of this abstract knowledge. The 
classrooms that we describe illustrate how teachers and students manage the process of threading 
concepts across these rich ecological contexts. We present descriptions of each of the lessons 
(with transcripts) and discuss their connections to our emerging theory.  

 
Case #1. Theta in Symbols, Paper and Wood: A Ballistic Device Design 

 
The ballistics project challenge 

I’m actually gonna give you a distance and I’m gonna say “okay we’re gonna send, 
we’re gonna set the basket fifteen feet away,” but whatever distance that is I’m gonna 
decide that at the time, we’re gonna set the basket so many feet away and you have to 
try to hit it. So by doing some calculations on, what you’re, um, ballistic device fires 
you can kinda set your angle hopefully to get, to get that distance.” 
 

 

Figure 3. One group’s design sketch (with verbal and mathematical elaborations added). 
 
This first case on the design of a ballistics device is drawn from a four-day unit from a high 
school Principles of Engineering classroom, the second of the three foundations courses in the 
Project Lead the Way® curriculum (www.pltw.org). On Day One of the lesson, the students in a 
second year pre-college engineering course learned the mathematics and physics of calculating 
projectile motion. The teacher highlighted for them the angle of ascent of the projectile—labeled 
theta—as the key variable that they must parameterize and represent in their sketches (one 
group’s sketch is shown in Figure 3) and ultimately in the wood, metal, plastic and other 
materials that they fashioned and assembled into a catapult, trebuchet, gun or some ballistic 
device of their own choosing and design. If these devices properly instantiate theta—that is, 
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permit the adjustment of the angle of release while holding the other influential variables (e.g., 
initial velocity) constant—students will be able to predict the distance that the projectile will 
travel. Throughout the sequence of the lesson, knowledge of theta is inscribed or represented in 
different modal engagements with: symbols and diagrams on the white board during an initial 
lecture, paper and pencil during small group design meetings, and collections of materials 
formed into a projectile device, which are ultimately manipulated and evaluated.   
 
First, we provide an analytic overview of the events of Day 2 of the four-day unit. Then we 
provide a more focused analysis of one interaction around a group’s design sketch. 
 
Table 2 provides a tabulation of the codes and descriptions applied to the modal engagements for 
one class day. Figure 4 shows the information spatially, with arrows showing forward and 
backward projection. There were 4 distinct ecological contexts (or major events with transitions). 
Each context has a specific setting and participation structure, such as lecture or group work. On 
this day, no major setting changes took place—it was all in the classroom—but other times the 
class may travel to the woodshop or the gymnasium and reform under different circumstances. 
Within each context there can be one or more modal engagements. This day saw a total of 18 
modal engagements, over 4 ecological contexts. Each modal engagement is assigned one or more 
codes for coordination, projection, and ecological shift (a transition). Projections further can be 
directed forward in time, emphasizing planning or goals; or backward, emphasizing reflection of 
making connections to past lessons and events. There is a sense in working with the data that 
backward projections are more likely to support students’ conceptual development and it often 
integrates current modalities with prior knowledge and invites reflective thinking. As the data 
show, this is a complex lesson with a great many modal engagements to connect.  Here we see a 
range of forward and backward projection, and coordination of a variety of modalities, 
suggesting students had many opportunities to integrate conceptual and procedural knowledge.  
 
Figure 4 shows how the entire sequence of the ballistics project was coded for modal 
engagements and transitions using our modal engagement analysis methodology. The analysis 
shows the hierarchical structure of the lessons44, where modal engagements are nested within 
ecological contexts. Columns show the various ecological contexts that the activities were 
embedded in throughout the project Arrows in the figure illustrate the roles of projection 
(italicized text) and coordination (underlined text) in the management of ecological shifts. In 
particular, it shows how the teacher often used backward (left arrow) and forward  (right arrow) 
projections together to bridge present modal engagements (bulleted entries within each context), 
such as working with design sketches, to those in the past (e.g., the physics and mathematics of 
projectile motion) and into the future. The figure also indicates more frequent use of forward 
projection as the teacher prepared students to build and test the ballistic device. 



   

Table 2. Modal engagements (with codes) for Day 2 of the ballistics device project. 
Ecological 

Context 
Setting: 

Participation 
Structure 

Context 
Description 

Modal 
Engagement 

Code
* 

Projection 
Type 

Modality 
Description 

Prep materials for 
building ballistic 
device 

P Forward Speech 

C + P Backward 

1 Classroom: 
Lecture 

Highly 
teacher 
controlled 

Solving Projectile 
Motion (PM) 
problem 

C + P Forward 
Projectile motion 
worksheet, ping pong 
ball, caliper 

Material 
discussion 

C + P Forward Rubber strap 

Measuring ping 
pong ball diameter  

C  
• 

Ping pong ball, 
caliper 

Material 
discussion 

C + P Forward Behavior of springs 

2 Classroom: 
Individual/small 
group work 

Students 
teams; 
Teacher 
coaches 

Measuring ping 
pong ball 

C  
• 

Ping pong ball, 
caliper, sticky note 

3 Classroom: 
Lecture 

Highly 
teacher 
controlled 

Demonstration for 
measuring ping 
pong ball 

C  
• 

Ping pong ball, 
caliper, diagrams, 
numeric place value  

Measuring ping 
pong ball 

C  
• 

Problem worksheet, 
ping pong ball, 
caliper, sticky note 

Measuring ping 
pong ball 

C  
• 

Worksheet, caliper 

Measuring ping 
pong ball 

C  
• 

Caliper, place value, 
sticky note 

Solving PM 
problem 

C  
• 

Worksheets 
(compared) 

Working on 
device design 

C + P Forward & 
Backward 

Design sketch & 
gesture 

Working on 
design 

C + P Forward & 
Backward 

Sketch 

Working on 
design 

C + P Forward Sketch 

Working on 
design 

C + P Forward Sketch 

Solving PM 
problem 

C + P Backward Worksheets 
(compared) 

Solving PM 
problem 

C • Worksheets 
(compared) 

4 Classroom: 
Individual/small 
group work 

Student 
teams; 
Teacher 
coaches 

Working on 
design 

C + P Forward Sketch, springs 

* Codes: C = Coordination; P = Projection. 

 



   

 
 

 
Boxes show the major ecological contexts that activity was embedded in throughout the ballistic device case. 
Bullets show the main modal engagements occurring sequentially in the case. 
Italics = Projection, Underline = Coordination, Italics and Underline = Projection + Coordination 
Arrows show the main backward/forward projections and point to projected past/future modal engagement(s). 
* indicates the modal engagement discussed in the transcript of the ballistic device case. 
  
Figure 4. Visual depiction of the modal engagements across ecological contexts for Day 2 of the Ballistics Device project.
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The particular modal engagement is depicted in the transcript below took place after a group of 
students presented their sketch of a catapult to the teacher on Day 2 of the four-day unit (Figure 
5). The discussion of the students’ design is sandwiched between the more formal lecture on 
kinematics (including algebra, trigonometry and the idealized behavior of an object in free fall 
with a constant horizontal velocity) and the material construction activity. Many aspects of this 
discussion serve to project toward the future context where the students will use their sketch to 
guide construction, and many aspects project back to the past kinematics laws and mathematical 
relations that were presented in the prior lecture.  
 
Over the course of the discussion it becomes clear to the teacher that these students have 
confused the angle of ascent of the projectile with another angle in the system -- the angle of 
retraction of the arm of the catapult (Figure 3).  Thus, the students’ design sketch not only 
misidentifies the relevant angle (a failure to coordinate theta) but it also adds another variable -- 
the tension on the rubber band, which influences the initial velocity.  The teacher attempts to 
point out this confusion in Lines 1 and 3 (See Transcript #1).  The students in Lines 4-6 try to 
salvage their sketch. Based on the constrained use of their gestures and eye gaze, and restricted 
references used in their speech, the students seem focused exclusively on the properties of the 
sketch itself, exhibiting epistemological commitments that constrain their discussion (see Figure 
1b). On Line 7 the teacher explains that the angle that they need to control is the angle of the 
release of the projectile with respect to the ground and, continuing on Line 9, that they need to 
design something that does not affect the initial velocity. The tacit implication is that varying 
initial velocity introduces new complications that were not addressed in the mathematical models 
presented during the previous class. On Lines 13 and 15, the teacher reaches back to the math 
lesson from the previous day and threads the central mathematical relation through to the sketch 
(Figure 5). In Lines 13-19 the teacher coordinates and projects the students’ design sketch 
backward to the math calculations that they did the day before on the whiteboard (which are still 
present in the front of the room) and forward to the future behavior of the yet-to-be-realized 
device. This coordination is accomplished through speech and gesture. The first gesture on Line 
15 (Figure 5a) is a flat-palmed hand lined up horizontally with the diagram, iconically 
representing theta as an angle relating the trajectory of the projectile with the ground, though 
translated into the plane of the paper sitting on the desk. This is an important reference because 
the hand shape and motion re-invoke a similar gesture that the teacher used during the lecture on 
the mathematics (algebra and trigonometry) of projectile motion—a gestural catchment. The 
parallel between the gesture used at the white board and the one enacted here highlights the 
recurrent hand shape as a sign for theta. The second gesture on Line 15 (Figure 5b) is a point 
indicating the calculations that are still on the whiteboard.  The teacher here uses speech and 
gesture to coordinate the calculations on the board with the students’ diagram in an effort to 
locate theta in the design sketch and reinstate its original meaning.   
 



   

    

Figure 5. (a) Line 15, Gesture 1: teacher iconically invokes theta. (b) Line 15, Gesture 2: teacher 
points to the whiteboard in the front of the room to index theta as a component of the kinematics 
laws from the lecture from the previous day. 

 
Case #1 Transcript 1.  
(NB. Speech transcript is complete but only gestures relevant to this analysis are shown, where 
square brackets denote the start and end of the gesture and numerical indices refer to the 
Gesture Notes at the end of the transcript.)  
 
1 T:  Well I’m wondering if the further you, pull your rubber band down- 
2  S  Mmhm. 
3  T:  is gonna affect your, velocity, more than your angle.  
4 S:  Yeah it’s. Well no this is the velocity but what we’re sayin’ is that this is how hard it pulls 

but then right here, where it where it, where the fulcrum is like this actually you can tilt it.  
5 S:  The rubber bands control the tension but the placement is what really controls... 
6 S:  Like. See what we’re saying? 
7 T:  So it’s it okay so, if I could, suggest, I think that, you might be able to adjust your angle 

by, by having some type, by controlling where this stops.  
8 S:  Yeah.  
9 T:  But that’s probably also gonna affect your, maybe affect your velocity. What I’m saying 

is. Either that or else you have to tip the whole thing.  
10  S:  No we don’t. That’s why cuz the two sides stay put but then the top part can, tilt, right there.  
11 T:  Okay.  
12 S:  So the fulcrum can change positions basically.  
13 T:  Alright. So I think maybe what you need to do is is, take into consideration what I just 

said about- 
14 S:  Yeah.  
15 T:  [-being able to control the ang-] [that’s why we did everything we did here-] 
       1              2  
16 S:  Mmhm.  
17 T:  -with the math. Because we wanna- 
18 S:  the math yeah.  
19  T:  -be able to adjust the angle of the trajectory. I would try to keep, the velocity, the same, 

consistent, throughout the whole every test that you do that that’s consistent and so all 



   

you’re gonna change once you once you decide what that velocity has to be all you’re 
gonna change is your angle.  

20 S:  Yeah.  
21 T:  Okay?  
22 S:  Mmhm.  
23 T:  I don’t really want you to use the tension on the rubber bands, as, the only control.  
  I want you to have an angle adjustment. 
 
Gesture Notes 
 1.  Angle gesture 
 2. point to whiteboard   
 
By way of summary, we reflect on this case in the language of our emerging theoretical 
framework. The locally invariant relation (the what of mathematics) is the angle of ascent of 
a projectile with respect to the ground, as represented initially by the symbol theta. The where of 
mathematics is described by ecological shifts and transitions between modal engagements. 
Cohesiveness is a challenge for some students who show epistemological commitments that 
appear to confine their thoughts, actions and forms of communication to the particular 
representations and materials that are centrally present (the 2D design sketch). To establish and 
maintain cohesion, we see the teacher threading the mathematics through the various modal 
engagements. The teacher uses speech and gesture catchment to coordinate the angle theta and 
its meaning with regard to projectile motion to the elements of the design sketch. He also 
identifies an important mis-conception, where students improperly identify an element of the 
catapult design as an instantiation of theta, leading them to parameterize the initial velocity 
rather than the angle of ascent with respect to the ground. Projection is used to signal for the 
student the historical role of the design sketch. Past projections are made to the mathematical 
formalisms that model projectile motion. A future projection is intended to position the sketch as 
a guide for the construction activity awaiting the students. Here the teacher specifically uses the 
impending testing of the device to clarify that they will not be changing the initial velocity but 
trying to keep that constant while varying the angle of release (theta) as a way to hit targets at 
varying distances. In these ways, theta serves as a central mathematical relation threaded through 
a range of modal engagements as theta is manifest in different settings, social exchanges, and 
material and symbolic forms. 
 
The modal engagement analysis of this case at the level of the entire day (Table 2 and Figure 4) 
and of a particular interaction (Transcript 1 and Figure 5) illustrates some of the challenges and 
resources that go into building coherence across these complex project-based lessons and 
threading mathematics concepts through the various material and representational forms and 
project activities.  
Case #2. Logic Enacted Through Algebra, Simulation and Silicone: A Digital Voting Booth 
 
The main activity of this digital electronics lesson was to design a voting booth privacy 
monitoring system. An effective monitoring circuit is indicated by two outputs: a green light-
emitting diode (LED) that is activated whenever a particular voting booth is available for use, 
and a red LED that lights up whenever privacy is at risk and entry is denied. 
 



   

The circuit design involved implementing the basic set of logical constraints and conditions into 
a working electronic circuit that outputs a green light when all of the conditions are met, or a red 
light (alarm) when any condition is violated. The process unfolds sequentially across the 
following modal engagements: introducing the problem (“For privacy reasons, a voting booth 
can only be used if the booth on either side is unoccupied.”), along with a “block diagram” 
representing the monitoring system, and an equipment list; discussing a completed truth table 
with entries composed of 1’s and 0’s accounting for all of the possible states of the circuit 
(voting booth occupancy and LED output) and a related, spatial Karnaugh map (K-map); 
generating and manipulating a set of Boolean algebraic expressions consistent with the K-map; 
drawing an Automated Optical Inspection (AOI) circuit; modeling the circuit in the MultiSims 
software to create computer generated   MultiSim diagrams; and building and debugging a 
working electronic circuit made of a “bread board,” integrated circuits, resistors and capacitors, 
wires, a power source and LEDs. Similar to the projectile motion lesson, the mathematics in this 
lesson (here logic rather than the algebra and trigonometry of kinematics) is manifest through a 
sequence of modal engagements with instructional contexts, representations and a range of 
material forms traversed by ecological shifts. The teacher often helped students establish 
cohesion between the algebraic relations and the different materials and representations using 
coordination and projection throughout the four-day lesson. 
 
It should be noted that in order to practically use the integrated circuits as a source for specific 
logic operations (e.g., AND, NOT, OR), the teacher and students had to look at something 
referred to as the “data sheet” (or spec sheet), which was a set of documents affixed on a poster 
board. This material illustrated the formal specifications of different logic gates and their layouts 
in each integrated circuit, which varied by manufacturer. The data sheets established the 
connections between idealized logic symbols for Boolean operations such as AND, NOT and 
OR, and the actual locations of the inputs and outputs of specific circuit components.  
 
Modal engagement analysis of the digital electronics case study illustrates several transition 
processes and the coordination between various modal engagements. The following transcript is 
an excerpt from the last observed day of the lesson in which the teacher initiates an ecological 
shift (Line 1) by calling all students to gather at the lab station of one student group that had 
made the most progress on their voting booth monitor. The class witnessed the conversation 
between the teacher and a member of the group about checking the circuit for accuracy and 
discussing how to improve it. The teacher starts out in Line 11 addressing a practical matter that 
is not evident in the symbolic or simulation-based representations—the need for an orderly and 
“clean” wiring job (“it’s just the spaghetti mess” in Line 13). The teacher in Line 13 then starts 
to model how to establish coordination of the simulated circuit shown in the   MultiSim diagram 
with the physical arrangement of wires, integrated circuits (“chips”), and electronic components 
using speech and gesture (see Figure 6).  
 



   

 

Figure 6. Line 13, Gesture 1: Teacher uses speech and pointing gestures to coordinate the 
generated   MultiSim diagram with the wiring of the digital circuit.  
 
However, in Line 14, the student chooses to work from the truth table rather than the   MultiSim 
diagram. Practically speaking, this allows the student to turn each input switch to the circuit on 
and off to model the occupancy state of the voting booth (ON = Occupied, OFF = Vacant). 
However, by mapping the entries in the truth table directly to the circuit, the student bypasses the 
conceptual connection of the circuit to the Boolean expressions that are central to the   MultiSim 
representation and to the original problem context. The narrower set of associations selected by 
the student exemplifies the challenges in constructing and maintaining cohesion of the concepts 
across the many forms in which it is manifest in complex, multimodal projects.  

 
The dialogue from Lines 18-24 and the corresponding gestures (Figure 7) show the teacher’s 
troubleshooting method using the systematic coordination of the entries in the truth table with the 
state of the digital circuit on the breadboard. The teacher models how each entry in the truth table 
maps directly to a physical state of the circuit, running his finger from one row to the next. The 
coordination between the table and the circuit provides situationally relevant feedback (the state 
of the green and red LEDs), while also establishing the meaning of the symbolic table entries45. 

 

    

Figure 7. (a) Lines 19-24, Gesture 3: Student reaches to the breadboard to adjust the input 
switches. (b) Lines 19-24, Gestures 2 and 3: Teacher (hand to far right) and student (hand below) 
each point to an entry in the truth table as part of a troubleshooting activity.  
 



   

Initially (Line 18), the teacher calls out the circuit inputs, while the student sets the switches 
appropriately (“zero, zero, zero” means none of the booths are occupied and all of the switches 
are in the OFF position). The student echoes the teacher in Line 19, reporting on the state of the 
input switches, and then describes the output (e.g., “alarm is off,” indicates that the red alarm 
LED is off and entry is permitted). By Line 21 the student has taken up the reporting of the state 
of the inputs and output, though the teacher is still guiding the process with his finger moving to 
each successive row along the right side of the truth table. In Line 24 the student notes the circuit 
gives the incorrect output, thus indicating a bug in implementing the logic electronically. It is not 
until Line 25 that the teacher withdraws his finger and the student autonomously coordinates the 
entries of the truth table with the state of the circuit. The student then rapidly completes the 
coordination of the table and the circuit, glancing repeatedly between the two material forms, 
noting several more successes and one additional implementation error.  
 
Case #2 Transcript 2 (NB. Speech transcript is complete but only relevant gestures are shown.)  
 
1 T:  Guys everybody stop come over here ’cause we’re gonna stop here and then we’re gonna 

do an exercise, up in the front. So but I need you everybody stop what you're doing leave 
it come over here. (Name) come on. Okay. It says ninety percent working but I want to 
make some comments about the board. 

2 S:  Yeah it’s messy. I get it. 
3 T:  I don’t have to make comments about the board you just did it. 
4 S:  Yeah. 
5 T:  Right? What’s uh the term I’m always giving you is spaghetti. 
6 S:  Spaghetti. 
7 T:  To try to solve problems and you got stuff running all over it’s much harder to do but I’m 

glad for the most part you’ve got it working. So just demonstrate to me that what you’ve 
got working but you need to put your wires- 

8 S:  I just need- 
9 T:  -so they- 
10 S:  -to put the switch. 
11 T: -they’re not at angles try to get them all square so you can follow a path, laying right next 

to each other. Nothing goes over switches, nothing goes over the integrated circuits, get 
’em straight, and if you got a long wire and you’ve got to make a bubble out of it shorten 
the wire. And I’m always saying if you have like these here are going at angles those 
could have been shortened straightened out. Kay.  

12 S:  Oh yeah. 
13 T:  And on your paperwork when you’re doing the check, you have numbers and letters here. 

What hole is that in? There’s a l- number and a letter. Use ’em and to check things off. 
Write ’em right on here. I did this one, this one’s hooked up, go to the next one, look  

  what the number on here. You know 1A. [You know is it 10B.] What are the things  
                             1 
  plugged into? Well that’s your checklist. Otherwise it’s hard just look at this as a whole 

picture, it’s just the spaghetti mess. But uh now I can follow this. If I know that you want 
to do something I can look. Look at the number and say oop you’re in Hole 2 when it 
should be Hole 3. You just put it in the wrong hole and that’s your troubleshooting. 
That’s a checklist by putting it on here. Alright go through and show me what does work.  



   

14 S:  Oh okay, we’ll uh we’ll just go with this thing. 
15 T: Alright. 
16 S:  Okay uh. 
17 T:  So we... 
18 S:  Booth alarm all of this is (at the same time) off right now? 
 T:   [Kay so you’re doing zero zero zero.] 
        2   
19 S:  [So zero zero zero booth is on alarm is off.]  
            3  
20 T:  [Okay.] 
       2 
21 S:  [Zero zero one booth is on alarm is off. Uh zero zero one (at the same time)...] 
            3 
 T:   [Zero one.] 
        2 
22 S:  [zero booth alarm same thing. This too so the green one should come on here and it  
       3 
  does and the red one doesn’t matter.] 
23 T:  [Yeah.] 
            2 
24 S:  [Uhhh (pause) yeah green one’s okay, so so far it works. Oh see that one’s the one that oh  
       3 
  so the green one doesn’t work but the red one works for that one over there. I’ll keep that 

a mental note okay.]  
25 S:  [Uh so these two doesn’t work uh the third one eh this one works. The thirrr… that one  
       3 
  works. Uhhh (pause) okay this one should be off but yeah. Uh this one works. That one 

works. That one works. This uh that one works. That one works. And that one works], so 
there’s three doesn’t work. 

 
Gesture Notes 
 1. Teacher points with a finger of one hand to a hole on the breadboard while holding the 

print out from the   MultiSim software with the other hand. 
 2. Teacher points to each line of the truth values corresponding to the state of the circuit. 
 3. Student points with a finger of one hand to each line of the truth values corresponding to 

the state of the circuit, while reconfiguring the input switches to provide the proper inputs.  
 
As with the ballistics unit, we have tabulated the specific occurrences of model engagements 
over the entire day from which Transcript 2 took place. Table 3 shows that on Day 4 there were 4 
separate ecological contexts or major divisions to the day: Students worked in teams 
implementing their circuit designs by wiring the breadboards; the teacher called the entire class 
over to observe the circuit of one group; one student from the team led a demonstration and, with 
the help of the teacher, debugged the circuit (this is portrayed in the transcript above); and 
students worked individually on a new design problem for a digital alarm clock. Over these 4 
contexts we identified ten modal engagements. This type of project work fosters a great deal of 
coordination – students are continually integrating information from  MultiSims, truth tables, 



   

circuits and output form logic probes. This is evident by the number of lone coordination (C) 
codes in Table 3. In addition to few projections, we can see that 3 out of 4 types of projection are 
forward reaching. This highlights the greater emphasis on what is to come, and how to avoid 
problems. It also shows that integration of prior knowledge and reflection on previous taught 
concepts was not common in this lesson – a finding that echoes the impressions from observing 
the entire four-day unit. This stands in contrast to the unit on projectile motion (Table 2), which 
made many backwards connections. The flow of cohesion among modal engagements is 
illustrated in Figure 8, where the brief transition from small group teamwork to the whole class 
demonstration is excluded to simplify the diagram.  
 
Table 3. Modal engagements for the digital voting booth monitoring system (Day 4) 
Ecological 

Context 
Setting: 

Participation 
Structure 

Context 
Description 

Modal 
Engagement 

Code
* 

Projection 
Type 

Modality 
Description 

Spaghetti mess C + P Forward Breadboard  
Connect power 
and ground to 
breadboard 

C  
• 

Spec sheet, 
breadboard,  
MultiSim 

Build circuit; fix 
problems 

C  
• 

 MultiSim, 
breadboard, 
worksheet 

1 Digital Lab: 
Student teams 

Teams wire 
breadboards 

Test/debug circuit C • Breadboard, logic 
probe 

2 Digital Lab: 
Shift from small 
group to whole 
class 

Teacher 
calls teams 
to stop and 
observe one 
group 

Demonstrating of 
working circuit 

ES  
• 

Whole circuit 

3 Digital Lab: 
Whole class 

Student-led 
demo/debug 

Aesthetics of 
circuit wiring 

C • Breadboard, gesture,  
MultiSim, truth table 

Plan future wiring 
of breadboard 

P Forward Speech 

Introduce Alarm 
Clock problem 

C + P Backward Worksheet 

Designing circuit C • White board, lab 
notebooks, Boolean 
logic, worksheets 

4 Classroom: 
Individual seat 
work 

Designing a 
circuit for an 
alarm clock 

Plan future work P Forward Speech 
* Codes: C = Coordination; P = Projection; ES = Ecological shift.  

 
In the language of our emerging theory, the what of mathematics is the propositional logic that 
instantiates the privacy conditions of the voting booth, which is reified in a truth table and a 
simplified Boolean expression. The mathematics is located across the modal engagements 
afforded by the table (the students’ preferred representation), Boolean algebra equations, the 
MultiSim diagram (the teacher’s preferred representation), and the circuit configuration itself, 
which gives a series of outputs in the form of lighted LEDs for a given set of inputs from the 
switches. Cohesion is established in several ways. The discussion of proper versus messy circuit 
wiring is used to illustrate how cross-modal coordination can be affected by the aesthetics of the 
physical implementation. This also highlights the practical consideration of constructing a well-
organized breadboard to provide paths between the physical circuit and the symbolic 
representation of the design that are more easily traced and debugged. Coordination is also 



   

established by showing that the trajectory of building and testing a correct circuit is not 
monotonic; rather, verification of the circuit involves going back to an earlier encountered 
representational form (in this case, truth table entries). We can see how epistemological 
commitments to the immediately present representational and material forms were modeled by 
the teacher. Explicit links between the circuit and the Boolean expression that models the context 
of the voting booth scenario are rarely identified in his speech (or throughout the multi-day 
project). In a parallel fashion, the student’s focus is also specifically on the truth table and 
circuit, rather than exhibiting the ways that these forms are particular manifestations of the 
logical relations that model the voting booth. The teacher regularly used forward projection with 
coordination to make connections between the current modal engagements and those that would 
be enacted at future stages of the project, establishing cohesion by communicating to the students 
the scope of the project. 
 
Discussion 
 
We have highlighted three transition processes that teachers (and students) use to establish and 
maintain cohesion across the range of modal engagements encountered in project-based 
engineering curricula: Guiding attention and behavior around ecological shifts across changing 
contexts, coordinating ideas across different spaces, and projecting ideas both forward and 
backward in time. As we have demonstrated in these cases, teachers use these approaches to 
support STEM integration. Yet there are, we claim, inherent challenges, which we explore in this 
Discussion section.  
 
Fostering STEM integration 
 
We have argued that, in order to forge cohesion within and across STEM disciplines, the “what” 
and “where” of mathematics have to be threaded through modal engagements and across 
ecological contexts. Tracking locally invariant relations across modal engagements is both 
related to and distinct from the notion of grounding, which refers to connecting more abstract 
and unfamiliar concepts and ideas to more familiar and concrete ones46 47 48 49 . The notion of 
grounding is often invoked in project-based learning and reform approaches to education, on the 
argument that context, materials and activity structures -- modal engagements that commonly 
occur in STEM classrooms -- help to establish the meaning and appropriate uses of abstract ideas 
in concrete and familiar ways, and help to make schooling more relevant50. Yet we observed in 
these cases that grounding contexts and activities cannot be assumed to enhance understanding 
and learning. This is because grounding contexts also introduce new demands of their own for 
establishing cohesion across the familiar and new modal engagements. In order for the potential 
of the grounding process to be realized, learners must understand the relation of the mathematics 
to the grounding objects and activities, and teachers and curriculum developers need to explicitly 
attend to these links to promote learning.  
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about the need to get rid of 
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and “untidy” wiring job 
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teacher’s guidance on: 
• Building circuit on 
Breadboard 
• Debugging circuit on 
Breadboard using logic probe 

 

 
• Teacher explains how to get 
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Boxes show the major ecological contexts that activity was embedded in throughout the digital electronics case. 
Bullets show the main modal engagements occurring sequentially in the case. 
Italics = Projection, Underline = Coordination, Italics and Underline = Projection + Coordination 
Arrows show the main backward/forward projections pointing to projected past/future modal engagement(s). 
*indicates the modal engagement discussed in the transcript of the digital electronics case.  

Figure 8. Modal engagements analysis of the digital voting booth project (Day 4).  
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Challenges in threading mathematics through different modal engagements 
 
Although integration is often central to the curricular objectives of these lessons, it is apparent 
that it is frequently challenging to achieve in the classroom. These challenges are well illustrated 
in the cases considered here, and have been implicated by others in analyses of STEM curricula 
and classroom instruction, as reviewed above. Students often struggle to “see” a mathematical 
idea in each of its settings and material, symbolic, and discursive instantiations. Teachers are 
challenged to help students to make those links.  
 
For example, the case of the ballistic device illustrated how the saliency of other angles in the 
design sketch lured students in one group away from the angle theta that was, from the 
standpoint of the curriculum designers and instructors, meant to be tracked and parameterized. 
As a second example, the digital electronics students failed to coordinate the Boolean algebra of 
the computer generated MultiSim diagram and the electronic circuit. The unlit circuit board was 
material proof that the particulars of the coordination were not accomplished and that the 
Boolean algebra, though correct, was not properly implemented to produce a working electronic 
device. The teacher and students attempted to debug the circuit by re-coordinating between the 
diagram (derived from the Boolean algebra) and the circuit board. Such debugging activities, 
particularly those carried out in the face of situationally relevant feedback (such as the output 
lights), are a powerful way to drive coordination and learning.  
 
Each representational form offers certain ways of realizing the target mathematical ideas and 
enables certain methods of communication about those ideas. To perform a specific task or learn 
a concept through multiple representations, knowledge of each of the representations and the 
skills to use them are required51.  When interacting with representations students must have the 
ability to understand, select, construct, and effectively use different representational forms in 
order to make sense of their learning experiences and cognitive tasks52 . Unfortunately, students 
are often faced with difficulty when presented with a new representation.  
 
One of the central issues to emerge from modal engagement analysis is a greater appreciation of 
the challenges of STEM integration from the learners’ perspective. There is a tendency to see 
hands-on activities and authentic contexts as powerful ways to ground new ideas and abstract 
representations. The analyses underscore the novel demands of working in multi-modal learning 
environments. As these cases illustrate, threading mathematics through different representational 
forms, as utilized in different modal engagements, is challenging both for teachers to facilitate 
and for students to recognize. 

 
Conclusion 

 
One of the primary goals---and one of the central challenges—of engineering education is 
threading mathematical concepts and ideas through the various material, discursive and 
representational modalities that students encounter during project-based instruction. Modal 
engagements analysis is used to better document this phenomenon, articulate the difficulties 
students experience, and describe the ways in which teachers actively produce and maintain 
cohesion across modal engagements. Analyses of the videos collected during two multi-day, high 
school engineering units, one in mechanics and one in digital electronics, reveal three processes 



   

used to foster cohesion in the classroom: Ecological shits, projection and coordination. Class 
participants may make an overt ecological shift, which reorients the activity to different 
representations, tools, media of instruction, and participant structures. Ecological shifts do not 
simply change the context but often alter the spaces in which instruction takes place and the 
modal engagements. Projection uses language and gesture to connect activities of the present to 
past or future modal engagements, and thereby produce cohesion over time. Coordination links 
different material and representational forms that are co-present in the students’ workspace and 
helps to establish mappings between seemingly disparate modalities, as when a truth table is 
mapped directly to each of the states of a digital circuit. By understanding students’ struggles to 
see cohesion across the complex elements of engineering activities and the methods for 
supporting cohesion production, it is possible to reframe the challenges of STEM integration and 
develop new methods for improving instruction.  
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Appendix A 
 
An Example of Two Different Physical Systems that Share Common Mathematical Models  
 
Consider the series RLC circuit shown in Figure A-1, with resistance R (measured in Ohms), 
inductance L (Henrys), capacitance C (Farads), and voltage across the battery V (Volts). We can 
use the voltage equations for each circuit element and Kirchoff's voltage law to write a second 
order linear constant coefficient differential equation (Eqn. 1) describing the charge on the 
capacitor over time (q(t)). An analogous model (Eqn. 2) can be used for the mechanical system 
in Figure A-2, which shows displacement as a function of time (x(t)) when a force F (Newtons) 
is applied to an ideal mass-spring-damper circuit with mass m (kg), spring constant k (N/m) and 
damping coefficient R (N-s/m). 
 
 

  
 

Figure A-1. A series resistor-inductor-capacitor (RLC) circuit and a real life set up. 
 
(Eqn. 1)   L q(t)’’ + R q(t)’ + (1/C)q = V 

 
Figure A-2. A series mass-spring-damper circuit. 

 
(Eqn. 2)   mx(t)’’ + Rx(t)’ + kx = F  
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