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Gestures are often taken as evidence that the body is involved in thinking and speak-
ing about the ideas expressed in those gestures. In this article, we present evidence
drawn from teachers’ and learners’ gestures to make the case that mathematical
knowledge is embodied. We argue that mathematical cognition is embodied in 2 key
senses: It is based in perception and action, and it is grounded in the physical envi-
ronment. We present evidence for each of these claims drawn from the gestures
that teachers and learners produce when they explain mathematical concepts and
ideas. We argue that (a) pointing gestures reflect the grounding of cognition in the
physical environment, (b) representational gestures manifest mental simulations of
action and perception, and (c) some metaphoric gestures reflect body-based concep-
tual metaphors. Thus, gestures reveal that some aspects of mathematical thinking are
embodied.

When teachers teach about mathematical concepts, they routinely produce ges-
tures along with their speech (e.g., Alibali & Nathan, 2007; Flevares & Perry,
2001; Goldin-Meadow, Kim, & Singer, 1999; Richland, Zur, & Holyoak, 2007).
When students talk about mathematical concepts, they also routinely produce
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248 ALIBALI AND NATHAN

gestures (e.g., Bieda & Nathan, 2009; Perry, Church, & Goldin-Meadow, 1988).
In fact, when students talk about concepts they are learning, they often express
new knowledge in gestures before they express it in speech (e.g., Alibali &
Goldin-Meadow, 1993; Church & Goldin-Meadow, 1986; Perry et al., 1988).
Thus, gestures are an integral part of communication about mathematical ideas.
Yet, as Roth (2002) noted, “There exists very little educational research concerned
with the role of gestures in learning and teaching, particularly in the subject areas
that have been characterized as dealing with abstract matters such as science and
mathematics” (p. 365).

Gestures are often taken as evidence that the body is involved in thinking and
speaking about the ideas expressed in those gestures. That is, gestures are taken as
evidence that the knowledge itself is embodied (Gibbs, 2006a; Hostetter & Alibali,
2008; McNeill, 2005; Núñez, 2005). But what does it mean for knowledge to be
embodied? Although there is as yet no unified theory of embodiment (Barsalou,
2008), scholars of embodied cognition generally agree that mental processes are
mediated by body-based systems, including body shape, movement, and scale;
motor systems, including the neural systems engaged in action planning; and the
systems involved in sensation and perception (Dreyfus, 1996; Glenberg, 2010).
This perspective has implications for learning and instruction across the range
of content areas; our focus here is on mathematics. In this article, we present
evidence drawn from teachers’ and learners’ gestures to help make the case that
mathematical knowledge is embodied. We argue specifically that mathematical
cognition is embodied in two senses: It is based in perception and action, and it is
grounded in the physical environment. We consider each of these claims in greater
detail in this article.

Why might it be important to know whether mathematical knowledge is
embodied? In our view, understanding the nature of mathematical knowledge
is essential for understanding mathematics performance, instruction, assessment,
and learning. An appreciation of the embodied nature of mathematical cogni-
tion will help one to understand why certain types of mathematics problems are
more difficult than others, to identify suitable assessment methods that accurately
gauge mathematical knowledge, to design more effective learning environments
(see, e.g., Johnson-Glenberg, Birchfield, Tolentino, & Koziupa, 2011), to select
appropriate methods for instructing mathematics content, and to understand why
learners have greater success with some instructional methods than with others
(see Núñez, Edwards, & Matos, 1999). Understanding the nature of mathematical
knowledge is also crucial to understanding how learners generate and construct
such knowledge and how it changes over time. These broad issues regarding
learning, instruction, and assessment are central to contemporary research in the
learning sciences.

It is also valuable to know how teachers and students express their knowledge
of mathematics in gestures. There is extensive evidence that gestures play a role
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EMBODIMENT IN MATHEMATICS TEACHING AND LEARNING 249

in communication, both in facilitating speakers’ language production (e.g., Kita,
2000; Kita & Davies, 2009; Krauss, 1998) and in promoting listeners’ com-
prehension (e.g., Goldin-Meadow et al., 1999; Kelly, Özyürek, & Maris, 2010;
Kendon, 1994). Moreover, mounting evidence suggests that gesture plays an inte-
gral, potentially causal role in knowledge development and change (e.g., Alibali
& Kita, 2010; Goldin-Meadow, Cook, & Mitchell, 2008; Nathan & Johnson,
2010; Radford, 2009; Singer, Radinsky, & Goldman, 2008). Thus, a better sci-
entific understanding of gesture is crucial to forging a deeper understanding of
instructional communication and knowledge change.

In this article, we argue that gestures manifest embodied mathematical knowl-
edge in three distinct ways, and we support this claim with literature and with
empirical illustrations. Building on the typology of gestures presented by McNeill
(1992), described in detail here, we argue that embodied knowledge is manifested
in different ways by different types of gestures. We focus in particular on the ges-
tures that teachers and learners produce in explanations in mathematics teaching
and learning situations, including teachers’ instructional explanations and learn-
ers’ explanations of their thinking. We focus on explanations because they are a
particularly rich source of gesture data. However, gestures are not produced solely
in explanations—gestures are ubiquitous whenever speakers express ideas in spo-
ken words (McNeill, 1992). It seems likely that the nature of gestures would be
similar for mathematical activities other than explanations that involve expressing
mathematical ideas in spoken words (e.g., asking questions, exploratory talk, peer
collaboration, presentations).

The nature of the mathematical content we focus on is diverse and includes
equation solving, word-problem solving, algebraic concepts (e.g., slope and inter-
cept), and geometric concepts (e.g., similar polygons). The specific examples that
we present are drawn from several different data sets, and they address mathemat-
ical thinking over a range of topics and developmental levels. For some of the data
sets, previously published reports presented quantitative analyses of students’ per-
formance (e.g., Alibali, 1999; Alibali, Bassok, Solomon, Syc, & Goldin-Meadow,
1999) but did not discuss specific examples of speakers’ behaviors in detail.
None of the examples presented herein have been presented elsewhere, with
the exception of one example that was presented elsewhere to make a different
point.

In focusing on gestures, we do not mean to imply that other bodily actions
(e.g., posture, gaze) are not relevant to mathematical cognition, and we also do
not mean to minimize the importance of the integration of modalities (such as
gesture, posture, and gaze) in interaction. We focus on gesture for several reasons.
First, there is burgeoning interest in gesture and its role in classroom interac-
tions and other educational settings (e.g., Crowder, 1996; McCafferty & Stam,
2008; Reynolds & Reeve, 2001; Roth, 2002; Williams, 2008). Second, scholars
of embodied cognition have begun to view gestures as an indicator of embodied
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250 ALIBALI AND NATHAN

mental representations (e.g., Nemirovsky & Ferrara, 2009; Núñez, 2005). Third,
gesture is of particular interest because it allows for overt indexicality, and it is
readily interpreted from video.

We start by briefly describing the embodied cognition perspective, and we
next summarize theoretical arguments for why gestures reveal embodied knowl-
edge. We then consider examples drawn from teachers and learners to argue that
gestures reveal that some aspects of mathematical thinking are embodied.

THE EMBODIED COGNITION PERSPECTIVE

The embodied cognition perspective encompasses a diverse set of theories that are
based on the idea that human cognitive and linguistic processes are rooted in per-
ceptual and physical interactions of the human body with the world (Barsalou,
2008; Wilson, 2002). According to this perspective, cognitive and linguistic
structures and processes—including basic ways of thinking, representations of
knowledge, and methods of organizing and expressing information—are influ-
enced and constrained by the particularities of human perceptual systems and
human bodies. Put simply, cognition is shaped by the possibilities and limitations
of the human body.

Researchers who work within the embodied cognition perspective make a vari-
ety of specific claims (see Barsalou, 2008, and Wilson, 2002, for reviews). Chief
among them is the claim that cognition is based in perception and action. This
holds true even for offline cognition—the cognitive activities that occur in the
absence of relevant environmental input. Many cognitive tasks are accomplished
by bringing sensory and motor resources to bear, even when the task referents
themselves are far removed in space and time (Wilson, 2002). Examples include
the use of mental imagery (e.g., Shepard & Metzler, 1971), the simulation of
actions during language comprehension (e.g., Glenberg & Kaschak, 2002), and
the construction of mental models during reasoning (e.g., Johnson-Laird, 1983)
and reading comprehension (e.g., Glenberg, 1999; van Dijk & Kintsch, 1983).
Consider, for example, how spatially scanning a mental image of guests seated
around the tables of an elaborate dinner party can facilitate planning, even though
the people involved are spread across the globe and the event itself is still months
away.

A related set of claims is that cognition occurs in real-world environments, is
used for practical ends, and exploits the possibility of interacting with and manip-
ulating external props (Anderson, 2003; Nathan, 2008). These connections to the
physical environment can serve to ground novel or abstract ideas or information
in the physical world. Grounding describes a mapping between an abstraction
and a more concrete, familiar referent, such as an object or event, that facilitates
meaning making (Koedinger, Alibali, & Nathan, 2008; Nathan, 2008).
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EMBODIMENT IN MATHEMATICS TEACHING AND LEARNING 251

Grounding of this sort may support the transfer of knowledge to new situations.
For example, Goldstone, Landy, and Son (2008, 2010; Landy & Goldstone, 2007)
have argued that learners’ perceptions become “tuned” to encode deep structure
in objects and events, and these perceptions are then carried forward in subse-
quent encounters with other instances of the same sort. Thus, rather than casting
abstractions as amodal formalisms that strip away perceptual qualities, they argue
that perceptual information is central to forming abstractions. From this perspec-
tive, grounding in the physical, perceptual world fosters knowledge that is robust
and “transportable.”

Although the literature is replete with examples demonstrating the roles of
action, perception, and grounding in cognitive tasks, our focus in this article is on
mathematical cognition, for which thinking and communicating are often about
abstract and imaginary entities. We argue that even mathematical cognition is
embodied, and it is embodied in two distinct senses—it is based in perception
and action, and it is grounded in the physical environment. Evidence for each of
these claims can be drawn from the gestures that teachers and learners produce
when they work with or communicate about mathematical concepts and ideas.
Before proceeding to specific examples to illustrate our claims, we first address
the issue of how gestures might reflect embodied knowledge.

HOW GESTURES REVEAL EMBODIED KNOWLEDGE

How do gestures reveal embodied knowledge? In this section, we present gen-
eral arguments about ways in which various types of gestures reveal embodied
knowledge. We draw on the typology of gestures presented in the seminal work of
McNeill (1992). McNeill’s (1992) typology is widely used in gesture studies, and
it is flexible, in the sense that it can be applied to gestures in any type of discourse
or any content area.

McNeill’s (1992) typology delineates four major categories of gestures:
(a) pointing (deictic) gestures, which are gestures that serve to indicate objects
or locations, often with an extended index finger but sometimes with other fingers
or the entire hand (e.g., pointing to a cube in order to refer to that cube); (b) iconic
gestures, which are gestures that depict semantic content directly via the shape or
motion trajectory of the hand(s) (e.g., tracing a triangle in the air to mean trian-
gle); (c) metaphoric gestures, which depict semantic content via metaphor (e.g.,
cupping hands as if to “hold” an idea, which reflects the metaphor IDEAS ARE

OBJECTS, discussed in detail later); and (d) beat gestures, which are motorically
simple, rhythmic gestures that do not express semantic content but that instead
align with the prosody of speech. It should be noted that many investigators who
utilize McNeill’s (1992) typology view the categories of iconic and metaphoric
gestures as together making up a broader category of representational gestures,
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252 ALIBALI AND NATHAN

defined as gestures that depict aspects of their meaning, either literally (in the case
of iconics) or metaphorically (in the case of metaphorics; e.g., Alibali, Heath, &
Myers, 2001; Kita, 2000).

In recent work, McNeill (2005) has argued that these gesture “categories” may
actually be better thought of as dimensions, because individual gestures often
incorporate elements of multiple categories. For example, a depictive gesture can
be performed over an object or location; such a gesture is both iconic and deictic
at the same time.

In this article, we make three claims about how different types of gestures man-
ifest embodied cognition: (a) Pointing gestures reflect the grounding of cognition
in the physical environment, (b) representational (i.e., iconic and metaphoric)
gestures manifest mental simulations of action and perception, and (c) some
metaphoric gestures reflect body-based conceptual metaphors. (Note that we do
not address beat gestures in this article.) In this section, we consider each of these
claims in turn. In the following sections, we provide illustrative examples drawn
from studies of teachers and learners communicating about mathematics.

Pointing Gestures Reflect the Grounding of Cognition

According to the Indexical Hypothesis (Glenberg & Robertson, 1999, 2000), peo-
ple comprehend language in part by indexing words and phrases to actual objects
or to “perceptual symbols,” which are perceptual memories that involve reactivat-
ing aspects of the perceptual states that occur when one is interacting with objects
(Barsalou, 1999). For example, when a listener comprehends the statement “The
baby is napping,” that listener may index the noun phrase “the baby” to an actual
baby who is physically present or to a mental representation of a baby that includes
perceptual information about the baby, such as information about how the baby
looks, sounds, or smells.

Pointing gestures are often used along with speech, and they manifest speak-
ers’ indexing of speech content to objects, locations, or inscriptions in the physical
environment. By “physical environment” we mean the setting for the interac-
tion (e.g., a classroom, tutoring session, or experimental session) including the
interlocutors (e.g., students, teacher, experimenter); the focal tasks; and the rep-
resentations, notational systems, tools, and technological resources that are used.
The environment also has social dimensions that may be relevant to the interac-
tion, such as norms for talking and interacting in the community as a whole (e.g.,
Are questions encouraged? Do students typically come to the front of the class to
present their ideas?).

Speakers use pointing gestures both to index physically present objects or
inscriptions and to evoke nonpresent objects or inscriptions, and such gestures
utilize the physical environment in a variety of ways (Butcher, Mylander, &
Goldin-Meadow, 1991; Morford & Goldin-Meadow, 1997). Speakers sometimes
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EMBODIMENT IN MATHEMATICS TEACHING AND LEARNING 253

point to perceptually similar objects to index nonpresent objects. For example,
Butcher and colleagues (1991) described a deaf child who pointed to a toy soldier
(one holding a xylophone) in order to request a different toy soldier (one holding
a bass drum). Speakers may also point to locations to index nonpresent objects
or people that are associated with those locations; for example, a child may point
to the cupboard where the cookies are usually stored (even if there are no cook-
ies inside) to request a desired cookie, or a teacher may point to the location on
the board where the homework assignment is customarily written in order to refer
to yesterday’s assignment. Speakers also sometimes set up locations within their
gesture space to serve as “placeholders” for objects or people and then point to
these locations to index those objects or people. In one extended example of this
type of indexing, a speaker talking about a movie plot set up different spaces for
the “bad guys” and the “good guys” and pointed to those spaces to index those
characters over the course of his narrative (McNeill, 1992, p. 155).

Pointing gestures physically link speech and associated mental processes to the
physical environment. Without the environmental ground that gives it meaning,
pointing would often be uninterpretable. As such, pointing gestures are “environ-
mentally coupled gestures” in the sense described by Goodwin (2007). Pointing
gestures “anchor” the information expressed in the verbal channel in the material
world (Williams, 2008), and in so doing they manifest the grounding of speech
in the physical environment. Thus, they provide support for claims that cognition
is situated in the real-world environment and that the environment is part of the
cognitive system (Wilson, 2002).

Representational Gestures Manifest Simulations of Action and Perception

A number of contemporary theorists have argued that simulated action is the
basis of many cognitive processes, including language and mental imagery (e.g.,
Barsalou, 1999; Gibbs, 2006b; Glenberg, 1997; Havas, Glenberg, & Rinck, 2007;
Solomon & Barsalou, 2004; Wu & Barsalou, 2009). A simulation can be defined
as the neural experience of performing or witnessing a particular action, such that
sensory, premotor, and motor areas of the brain are activated in action-appropriate
ways. Both behavioral and neuropsychological evidence support the claim that
simulations are involved in language comprehension and in the formation and
manipulation of mental images.

Simulating actions and perceptions involves activating neural areas that are
involved in planning actions (Jeannerod, 2001) and in perceiving and using
objects (Gerlach, Law, & Paulson, 2002; Grafton, Fadiga, Arbib, & Rizzolatti,
1997; Kosslyn, 2005). According to the Gesture as Simulated Action framework
(Hostetter & Alibali, 2008), in some cases this premotor activation is realized in
motor output, specifically in gestures. The particular type of gestures thought to
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254 ALIBALI AND NATHAN

arise in this way is representational gestures (i.e., gestures that depict semantic
content, either literally or metaphorically, via handshape or motion trajectory).

This view is compatible with Streeck’s (2002) argument that certain repre-
sentational gestures are “abstracted from instrumental actions” (p. 19). Streeck
analyzed the gestures produced by an auto mechanic in talking about his work
and showed that many of them reflected actions that the mechanic commonly
performed (turning a key, pushing a car, listening for a cranking sound). One
interpretation is that the mechanic simulated these actions when speaking about
them, even when the relevant objects were not immediately present, and as a
consequence he produced gestures that reflected those actions.

Hostetter and Alibali (2008, 2010) argued that whether a simulation is actually
produced as a gesture depends in part on the strength of the action component of
the simulation. Specifically, speakers produce gestures when the action compo-
nent of a given simulation exceeds a threshold that is determined by a number of
cognitive and social factors. For the present purposes, the details regarding which
factors affect the threshold are not important—the crucial claim is that represen-
tational gestures manifest the motoric and perceptual simulations that underlie
language and imagery.

Note that the claim is that representational gestures can derive not only from
simulated actions but also from simulated perceptions. This claim is based on the
assumption that there are bidirectional, reciprocal relations between perception
and action (e.g., Dewey, 1896; Gibson, 1979). From this perspective, action and
perception are intimately linked: The purpose of perception is to guide action (see,
e.g., Craighero, Fadiga, Umiltà, & Rizzolatti, 1996), and actions (e.g., movements
of the eyes, heads, and hands) are necessary in order to perceive (e.g., Campos
et al., 2000; O’Regan & Noë, 2001). When humans perceive objects, they auto-
matically activate actions appropriate for manipulating or interacting with those
objects (Ellis & Tucker, 2000; Tucker & Ellis, 1998). Thus, imagining an object
can evoke simulations of perception (i.e., of the actions associated with perceiv-
ing the object) or of potential actions involved in interacting with the object. From
this perspective, it does not really matter whether a gesture is simulating action or
perception—they are two sides of the same coin.

In sum, according to Hostetter and Alibali (2008), representational gestures
derive from the same simulations of action and perception that also underlie lan-
guage and mental imagery. Put simply, representational gestures occur because
thinking is based in perception and action. Thus, representational gestures provide
support for the claim that cognition is based in the body.

Some Metaphoric Gestures Reflect Body-Based Conceptual Metaphors

Lakoff and Johnson (1980) argued that a set of broad-based metaphors underlies
the conceptual system. These metaphors structure understanding and perceptions
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EMBODIMENT IN MATHEMATICS TEACHING AND LEARNING 255

of the world, and they are manifested in a range of expressions in everyday
language. Some examples are LIFE IS A JOURNEY (e.g., he needs some direc-
tion), GOOD IS UP (e.g., things are looking up), and so forth. These conceptual
metaphors are based on fundamental aspects of human experience, such as com-
mon actions, spatial relations, and bodily experiences. However, it is worth noting
that they are not cross-culturally universal (e.g., Núñez & Sweetser, 2006), sug-
gesting that although there are ties to bodily experiences, their realization is also
influenced by social and cultural factors.

McNeill (1992) presented evidence that conceptual metaphors are frequently
manifested in representational gestures that depict abstract concepts in terms of
images (see Cienki & Müller, 2008, for recent work on this topic). McNeill (1992)
termed such gestures metaphoric gestures. One example metaphor that McNeill
(1992) discussed extensively is the conduit metaphor (see Lakoff & Johnson,
1980; Reddy, 1979), which holds that IDEAS, CONCEPTS, MEANINGS (and so
forth) ARE OBJECTS; WORDS, SENTENCES, AND OTHER LINGUISTIC EXPRES-
SIONS ARE CONTAINERS; and COMMUNICATION IS SENDING AND RECEIVING.
This conduit metaphor is frequently manifested in gestures that depict holding or
transferring objects. For example, a speaker might extend her hand as if holding
something while saying, “I have a great idea” or “I just thought of something.”

Many of the conceptual metaphors discussed by Lakoff and Johnson (1980)
are based on image schemas about space, movement, forces, and other aspects of
human experience that are inherently spatial and therefore readily expressed in
gestures. For example, HEALTH IS UP, SICKNESS IS DOWN (she’s in top shape;
his health is declining); HAPPINESS IS UP, SADNESS IS DOWN (that boosted
my spirits; I was feeling low). Many of the conceptual metaphors that underlie
mathematics are also inherently spatial; for example, NUMBERS ARE LOCATIONS

IN SPACE (e.g., approaching zero) and ARITHMETIC IS COLLECTING OBJECTS

(e.g., put two and two together; Lakoff & Núñez, 2001). Metaphors that involve
space and action are readily expressed in metaphoric gestures that reflect the
spatial structure of the underlying images.

Summary

In brief, we argue that speakers’ gestures provide evidence for several of the
key claims of the embodied cognition perspective. Pointing gestures manifest
the grounding of cognition in the physical environment. Such gestures there-
fore support the claims that cognition is situated in the environment and that
the environment is an integral part of the cognitive system. Representational ges-
tures manifest the motoric and perceptual simulations that underlie language and
imagery, and some metaphoric gestures (a subclass of representational gestures)
reflect conceptual metaphors that are grounded in the body. These types of ges-
tures provide support for the claim that cognition is based in the body. They also
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256 ALIBALI AND NATHAN

demonstrate that bodily resources enable offline cognition about objects, events,
and relations that are not immediately present.

All of these types of gestures are prevalent in talk about mathematical concepts
and procedures, thus providing support for the claims that mathematical ideas are
grounded in the environment and that they are based on bodily experiences. In the
following sections, we present evidence on these points from mathematics teach-
ers’ and learners’ pointing gestures, representational gestures, and metaphoric
gestures.

In the combined speech/gesture transcripts presented in this article, square
brackets indicate the words that accompany each gesture. Gestures are num-
bered below the bracketed corresponding speech and described in detail below
the speech transcript.

POINTING GESTURES MANIFEST GROUNDING
IN THE PHYSICAL ENVIRONMENT

We have argued that pointing gestures reveal speakers’ indexing of speech to the
environment. In this section, we provide examples of mathematics teachers and
learners utilizing pointing gestures to index talk about mathematical ideas to the
physical world.

Teachers regularly use pointing gestures in mathematics lessons. Indeed, in
elementary mathematics lessons, pointing gestures are the most commonly used
type of gesture (Alibali, Nathan, & Fujimori, 2011). The referents of math-
ematics teachers’ pointing gestures include common classroom objects, math
manipulatives that were designed for instructional purposes (such as balance
scales or algebra tiles), and inscriptions that symbolize mathematical concepts
or relationships (such as equations, graphs, and diagrams).

When teachers point to objects or inscriptions as they speak, those pointing
gestures link their verbal stream to its referents. The same holds true for students’
pointing gestures. Figure 1 depicts a series of pointing gestures produced by an
elementary school student as he explained how he obtained his (incorrect) solution
(17) to the problem 6 + 3 + 4 = __ + 4.1 In this excerpt, the student solved the
problem, and the experimenter then asked him to explain how he arrived at his
solution. He said, “6 plus 3 is 9, plus 4 is 13, plus . . . 13 plus 4 is 17,” and he
pointed to each of the numbers in the problem in turn. It is worth noting that he
used his left hand to point to the 6, 3, and 4 on the left-hand side of the equation
and his right hand to point to the 4 on the right-hand side and to his solution (17),
suggesting that he was aware of the fact that the equation had two sides, even

1This example is drawn from the data set reported in Alibali (1999), an experimental study of how
children’s explanations of equations change in response to different types of instruction.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

is
co

ns
in

 -
 M

ad
is

on
],

 [
. M

itc
he

ll 
J.

 N
at

ha
n]

 a
t 1

0:
46

 0
1 

M
ay

 2
01

2 



EMBODIMENT IN MATHEMATICS TEACHING AND LEARNING 257

“6

plus 4 is 13

plus 3 is 9

plus,13 plus 4

is 17.” 

FIGURE 1 Pointing in a student’s explanation of a mathematical equation. Accompanying
speech is indicated under each frame.

though he did not utilize this fact in his solution procedure. Such gestures can
reveal the “leading edge” of a learner’s knowledge (Alibali & Goldin-Meadow,
1993). These pointing gestures link the student’s verbal utterance to its referents
on the blackboard.

In this example, as seen in Figure 1, the student was standing close to the refer-
ents of his speech, so his gestures could index their referents quite unambiguously.
In other cases, students speak from their seats and refer in both speech and gesture
to referents at a distance, such as inscriptions on the blackboard. In such cases,
teachers sometimes index students’ speech with their own pointing gestures as
students speak (a phenomenon we call addressee gesture; Nathan, 2008). At other
times, teachers revoice the content of a student’s speech immediately following
the student’s turn (O’Connor & Michaels, 1993) and use pointing gestures along
with that revoicing. Both types of teacher pointing appear to index speech not only
for the benefit of the student who is speaking (and who may be using ambiguous
gestures in an effort to index speech to far-away referents) but also for the benefit
of other students in the class.
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258 ALIBALI AND NATHAN

Pointing gestures that index speech to objects and inscriptions in the environ-
ment are also adept at conveying relationships between mathematical ideas (see,
e.g., Alibali & Nathan, 2007; Richland et al., 2007; Williams, 2008). Teachers fre-
quently use sets of pointing gestures to highlight corresponding aspects of related
representations (Alibali et al., 2011). Most often, teachers utilize sequential points
to corresponding elements of related representations, first indicating an element
of one representation and then indicating the corresponding element in another
representation (e.g., the y in an equation and the y-axis on a graph, or the base of
triangle and the b in the formula A = 1/2 bh). Less often, teachers utilize simultane-
ous points to express the link, using both hands to point to corresponding elements
in two representations at the same time.

Figure 2 illustrates both a teacher’s use of gestures to index a student’s utter-
ance as she revoices that utterance and the teacher’s use of a series of pointing
gestures to highlight relationships among representations.2 This particular excerpt
is part of an episode in which the teacher highlights the relationships between two
similar rectangles. As seen in Figure 2, the teacher is projecting several figures of
rectangles via an overhead projector. She asks a student to justify why two of the

FIGURE 2 Pointing gestures that highlight corresponding aspects of related representations:
Corresponding sides in similar rectangles.

2This example is drawn from an unpublished corpus of 18 middle school mathematics lessons
collected in order to document teachers’ use of gesture in naturalistic instructional settings (Alibali,
Nathan, Wolfgram, Church, Knuth, Johnson, Jacobs, & Kim, 2010).
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EMBODIMENT IN MATHEMATICS TEACHING AND LEARNING 259

figures are similar. Recall that square brackets indicate the words that accompany
each gesture. Gestures are numbered below the bracketed corresponding speech,
and gesture descriptions are presented below the speech transcript.

Teacher: Why do you think they’re similar?
Student (off camera): Because if you add, I mean if you times ABCD times three,

then it equals the twelve six-, by six.
T: Oh, [so you’re looking at the fact that this side [is three times longer.]]

1 2
S (at the same time): Is three times.
T: [And this side [is three times longer?]] Okay.

3 4
1. Right hand points with pen to the short side of the small rectangle; holds during

the next gesture.
2. Left hand points with index finger to the short side of the large rectangle.
3. Right hand points with pen to the long side of the small rectangle; holds during

the next gesture.
4. Left hand points with index finger to the long side of the large rectangle.

Note that in this case, the teacher’s revoicing of the student’s speech highlights
the similar relationship between the rectangles and breaks it down into two com-
ponents: the similarity of the short sides and the similarity of the long sides. Thus,
her revoicing fleshes out the “times three” relationship that the student mentions
and also uses more mathematically precise language (“this side is three times
longer” vs. “times ABCD times three”). Note also that for each pair of corre-
sponding sides, the teacher uses gestures that are sequential in their onsets, but in
each case she holds the first point to the side on the smaller rectangle while she
points to the corresponding side on the larger rectangle. Thus, she indexes both of
the related items simultaneously.

There is evidence that instructional points like the ones in this example affect
learners’ uptake of lesson content. For example, in one study of kindergarten stu-
dents learning about symmetry, children succeeded on more than twice as many
posttest items after a lesson that included pointing gestures than after a compara-
ble lesson that did not include pointing gestures (Valenzeno, Alibali, & Klatzky,
2003). Along similar lines, previous studies in laboratory settings have demon-
strated that pointing gestures affect listeners’ comprehension of the speech that
accompanies them, particularly when that speech is ambiguous (Thompson &
Massaro, 1986) or complex relative to the listeners’ skills (McNeil, Alibali, &
Evans, 2000).

Pointing gestures may serve as an aid to comprehension and learning because
they reduce “cognitive load” for learners. Cognitive load theory (Sweller, van
Merrienboer, & Paas, 1998) presents a general framework intended to explain
and predict how instructional methods that make varying demands on learners’
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260 ALIBALI AND NATHAN

working memories influence comprehension and learning. One of the central find-
ings from this program of research is the split-attention effect—the phenomenon
that learners’ comprehension is better when they do not have to integrate dis-
parate information in a serial manner, because this divides their limited attention
resources. Learning is greater when lessons aid learners in integrating information,
such as when related verbal and numeric information is physically integrated in
a diagram (Mayer & Moreno, 2002). We suggest that when teachers use pointing
gestures to perform this integration, learners may also require fewer resources to
shift attention between two related sources of information. This should reduce
working memory demands, freeing up resources for encoding and processing
information as well as accessing prior knowledge. Simultaneous pointing (such
as that shown in Figure 2) may be particularly effective for reducing split atten-
tion because information is integrated both spatially and temporally; we are testing
this hypothesis in ongoing work.

The examples we have presented thus far illustrate learners’ and teachers’ use
of pointing gestures to index the referents of their speech in talk about mathemat-
ical ideas. Thus, these examples illustrate speakers’ grounding of mathematical
ideas in the physical environment, which includes mathematical inscriptions that
are perceptually available to both speakers and listeners.

REPRESENTATIONAL GESTURES MANIFEST MENTAL
SIMULATIONS OF ACTION AND PERCEPTION

We have argued that representational gestures reveal speakers’ mental simu-
lations of perceptions and actions. In this section, we provide examples of
mathematics teachers and learners expressing simulated actions and percep-
tions in representational gestures as they speak about mathematical concepts and
procedures.

Although less frequent than pointing gestures, representational gestures are
nevertheless quite common in mathematics instruction (Alibali et al., 2011). Such
gestures sometimes reveal simulations of actions on mathematical objects. A rep-
resentative example, shown in Figure 3, is drawn from a tutoring session in which
a teacher (seated on the right) sought to illustrate for a student (seated on the left)
how a line on a graph looked different when the slope was altered from 2 to 4. The
example is drawn from an unpublished corpus of tutorial interactions between
teachers and middle school students that were designed in order to investigate
gesture in teacher–student interactions on a common set of tasks. The tutorials
focused on slope and intercept and how they are represented in equations and
graphs (Alibali, Nathan, Wolfgram, Church, Knuth, Johnson, Jacobs, & Hostetter,
2010). The graph the teacher and student are discussing is shown in Figure 4.
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EMBODIMENT IN MATHEMATICS TEACHING AND LEARNING 261

Teacher: Right. Right. [So this one–] [this one at 2x]
1 2

T: [is kind of like starting like right here, right?
3

T: But that]—[then so the 4x is kinda going up].
4

1. Point to line on graph that depicts y = 2x
2. Represent line in neutral space with forearm (elbow on table) at an angle with a

slope of roughly 3 (between 2 and 4)
3. Lower forearm to represent slope of 2
4. Raise forearm to represent slope of 4

Figure 3 depicts Gestures 3 and 4. In this example, the teacher’s gestures sim-
ulate the action of altering the slope of the line. It is worth noting that, in this
example, the teacher also establishes a link between the slopes of the lines on
the graph and the symbolic expressions 2x and 4x. Thus, teachers utilize not
only pointing gestures but also representational gestures to link related ideas in
mathematics instruction.

Representational gesture can also reveal simulated perceptions—most often
visual perceptions. In talk about mathematics, such gestures often reveal per-
ceptual characteristics of inscriptions, which are visual images. In the following
example, shown in Figure 5, the teacher (the same one shown in Figure 2, in a
different lesson from the same unit on similar polygons) seeks to highlight the
correspondence between the “bottom sides” of two similar triangles. To do so, she
simulates a visual image of the bottom side of a triangle as well as of the two
triangles as they were positioned on a page in students’ textbooks.

FIGURE 3 Representational gestures that simulate action on a mathematical object: Altering
the slope of a line.
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262 ALIBALI AND NATHAN

FIGURE 4 Graph that is the focus of interaction in Figures 3, 9, and 10.
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EMBODIMENT IN MATHEMATICS TEACHING AND LEARNING 263

FIGURE 5 Representational gestures that depict inscriptions: Bottom side of a triangle (top
panel) and two triangles (bottom panel).

Teacher: Well, they’re saying that [that bottom side]
1

T: on [both of those triangles]
2

T: [correspond to each other]
3

1. Both hands start from the center and move apart, drawing the bottom side of a
triangle

2. Slightly cupped hands are held up to depict two triangles
3. Hands move alternately up and down
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264 ALIBALI AND NATHAN

In this case, the teacher’s gestures simulate an inscription drawn from the
students’ textbooks. The teacher uses gesture to highlight a particular aspect of
that inscription, namely the (corresponding) bottom sides of the two triangles,
which is relevant to her larger point about relations between mathematically sim-
ilar objects. Representational gestures that simulate inscriptions have also been
described by Edwards (2009) in work on teachers’ talk about fractions.

In other cases, teachers’ representational gestures simulate real-world objects
that ground or give meaning to mathematical ideas. In the following example,
presented in Figure 6, the same teacher grounds the concept of a right angle with
a familiar object, the corner of a piece of paper:

Teacher: . . . [doing a right angle is really easy cause it’s like the [corner] of your
1 (held) 2

[paper]].
3

1. Palms of hand pressed together to represent right-angle corner of paper; held
for the remainder of the utterance

2. Moves hands slightly up and down
3. Moves hands slightly up and down

In this example, it is interesting to note that the very same gesture is used both
for “right angle” and for “corner of paper”—the gesture is produced initially with

FIGURE 6 Representational gesture depicting a real-world object that grounds a mathemat-
ical concept: Corner of a piece of paper/right angle.
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EMBODIMENT IN MATHEMATICS TEACHING AND LEARNING 265

the phrase “right angle” and it is then reinvoked (with superimposed beat ges-
tures, which are up-and-down movements superimposed upon representational
gestures, typically for emphasis; see McNeill, 1992) on the expression “corner
of your paper.” Thus, the link between the mathematical object and the real-
world object is not simply depicted in the gesture but is actually enacted in the
gesture.

In some cases, speakers also utilize representational gestures to simulate the
real-world objects and situations that mathematical problems are about. In the
following example, a college student was asked to describe the gist of a word
problem to another participant and then to describe how he would go about solving
the problem.3 The problem in question was the following:

For a lecture, 10 rows of chairs have been arranged in a lecture hall. The chairs have
been set up such that the number of chairs in each row increases by a constant from
the number of chairs in the previous row. If there are 25 chairs in the first row and
115 chairs in the 10th row, how many chairs total are there in the lecture hall?

In describing the problem, the student shown in Figure 7 began by saying the
following:

FIGURE 7 Representational gesture depicting a real-world situation addressed in a math
problem: Rows of chairs in a lecture hall.

3This example is drawn from the data set reported by Alibali et al. (1999), which addressed
relations between adults’ problem representations and their strategy use.
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266 ALIBALI AND NATHAN

Student: There are, [er, [a constant rate of increase of chairs in each row]
1 2

[subsequent to the first row]]
3

1. Left hand, palm sideways and facing self, on table about 18” from the body,
held in this position for the remainder of the utterance (represents first row)

2. Right hand, palm sideways and facing self, starts next to the left palm and makes
a series of four hops toward the self (represents subsequent rows)

3. Repeat gesture 2

In this gesture, this student simulated the perceptual experience of viewing
rows of chairs in the lecture hall. Thus, this gesture suggests that the student
constructed a “situation model” of the problem, or a mental model of what the
problem is about. This situation model presumably draws on the student’s past
experience with chairs and lecture halls, which enables him to simulate the per-
ceptual experience of viewing the lecture hall and to express that simulation in
gestures. Note that in this example the simulation does not capture a specifically
mathematical idea; instead, the simulation captures a real-world situation that is
the focus of a mathematical problem.

One might ask how this framework might account for simulations that speak-
ers have never experienced. Simulations are mental activities, and as such they
can be manipulated and controlled by the simulator, just as a mental image can
be manipulated and controlled by the imager. Consider a speaker who has never
skydived before. The speaker can use motoric knowledge about what it feels like
to jump from a diving board into a swimming pool and visuospatial knowledge
about how things look from the window of an airplane to construct a simulation of
the experience of skydiving. The simulation might be “faulty” (i.e., jumping from
a plane could differ from jumping from a diving board in very important ways),
but this faulty simulation would presumably support gestures anyway.

Can simulations be used to conceptualize things that are completely imaginary
or impossible for humans to experience? Indeed, by drawing on real-world expe-
rience, and by using analogy and metaphor, people regularly simulate such things.
For example, McNeill (1992) described the gestures that two mathematicians
used in conversation about various abstract mathematical ideas. The mathemati-
cians expressed the idea of a mathematical limit in gestures that incorporated
“straight-line trajectories followed by ‘end-marking’ (a tensed stop)” (McNeill,
1992, p. 166)—suggesting that they conceptualized mathematical limits by anal-
ogy to physical limits, which they simulated via movements that were physically
limited.

Why do speakers express simulated actions and perceptions in gestures? As
described earlier, according to Hostetter and Alibali (2008), the motor activation
involved in simulating actions or perceptual experiences, in conjunction with the
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EMBODIMENT IN MATHEMATICS TEACHING AND LEARNING 267

motor activation involved in speaking, sometimes exceeds a speaker’s threshold
for producing overt action, so the speaker produces a gesture. This framework
implies that speakers produce gestures as a direct consequence of the motor
activation involved in planning and producing speech (of course, influenced by
aspects of the setting, addressee, and topic, as well). It is also possible that speak-
ers may intentionally lower their activation threshold for producing overt action
when they wish to have the benefits of gesture for their cognition—that is, they
may choose to move when they think doing so may be useful. Many experiments
have suggested that representational gestures facilitate thinking or speaking, for
example by focusing speakers’ attention on perceptual information (Alibali &
Kita, 2010), by helping speakers to package ideas into units suitable for speak-
ing (Kita, 2000; Kita & Davies, 2009), by activating mental images (de Ruiter,
1998; Wesp, Hess, Keutmann, & Wheaton, 2001), or by priming lexical items
(Krauss, Chen, & Gottesman, 2000). Speakers may realize—perhaps implicitly—
that gesture facilitates thinking and speaking in these ways, and they may alter
their gesture thresholds to take advantage of these benefits.

There is also extensive evidence that representational gestures contribute to
listeners’ comprehension of the accompanying speech (e.g., Cook & Tanenhaus,
2009; Kelly & Church, 1997; Kendon, 1994). Gestures may be beneficial for
communication in part because they help listeners to simulate the actions and per-
ceptions that are expressed in speakers’ gestures (see Alibali & Hostetter, 2010,
for a discussion of this issue).

In brief, evidence from representational gestures suggests that explaining
mathematical thinking involves simulations of actions on mathematical objects,
simulations of visual images of mathematical ideas (often mental images of
inscriptions), and simulations of the real-world situations that mathematical
problems address. Speakers produce such gestures when they think and speak
about mathematical ideas, and indeed they may intentionally produce such ges-
tures in order to facilitate thinking about such ideas or to promote effective
communication about such ideas.

METAPHORIC GESTURES REVEAL BODY-BASED
CONCEPTUAL METAPHORS

We have argued that some metaphoric gestures reveal speakers’ body-based
conceptual metaphors. According to Lakoff and Johnson (1980), conceptual
metaphors derive from image schemas regarding space, moving, forces, and other
aspects of human experience. Metaphors that involve action and space are readily
expressed in gestures (see Cienki & Müller, 2008).

Lakoff and Núñez (2001) presented a theoretical analysis showing that con-
ceptual metaphors that involve action and space may underlie many mathematical
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268 ALIBALI AND NATHAN

concepts. These metaphors are manifested in the language used to speak about
mathematical concepts. Two illustrative metaphors are NUMBERS ARE LOCA-
TIONS IN SPACE (e.g., approaching zero) and ARITHMETIC IS COLLECTING

OBJECTS (e.g., put two and two together, take three apples from six and there
will be three left”).

Many of the conceptual metaphors that underlie mathematical ideas rely on
a cognitive mechanism called fictive motion, which allows one to conceptualize
static entities in dynamic terms (Lakoff & Núñez, 2001; Talmy, 1996). Fictive
motion is commonly expressed in everyday language (e.g., “the highway runs
beside the river for a stretch,” “the hedge goes along the border between the two
properties”), and it underlies many examples of the NUMBERS ARE LOCATIONS

IN SPACE metaphor, such as “f (x) never goes beyond 1”.
The conceptual metaphors that underlie mathematical ideas are often expressed

in the gestures that speakers produce when speaking about those ideas. Thus,
metaphoric gestures provide evidence about the “psychological reality” of
the conceptual metaphors that underlie mathematical concepts (Núñez, 2005,
2008). In this section, we discuss examples of metaphoric gestures produced
by mathematics teachers and learners that reveal conceptual metaphors in
mathematics.

Núñez (2005, 2008) presented several examples of conceptual metaphors
expressed in gesture drawn from mathematics professors teaching at the uni-
versity level. In one example, a professor describes a sequence that “oscillates”
between two values, and he depicts this oscillation in gesture with his right
arm moving back and forth. In another example, a professor describes an
unbounded monotonic sequence that “goes in one direction,” and he depicts this
sequence in gesture using a circular motion of his hand, which he produces
while walking forward at the front of the classroom. These examples illustrate
the NUMBERS ARE LOCATIONS IN SPACE metaphor, and both involve fictive
motion.

An example from our own data, which we have presented elsewhere to make a
different point (Alibali et al., 2011), illustrates the ARITHMETIC IS COLLECTING

OBJECTS metaphor. In this example, a middle school teacher is giving a lesson
about using equations to model the configuration of a pan balance with objects on
each side. With an overhead projector, she projects a figure of a (balanced) pan
balance with two spheres on one side and two cylinders and a sphere on the other
side and, below it, the associated equation, s + s = c + c + s.

The teacher first talks about removing identical objects from both sides of the
pan balance, saying, “I am going to take away a sphere from each side.” With this
utterance, she makes a grasping handshape over the spheres on each side of the
pan balance figure. She then says, “Instead of taking it off the pans, I am going
to take it away from this equation.” With this utterance, she first mimes remov-
ing a sphere from each side of the pan balance figure and then makes the same
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EMBODIMENT IN MATHEMATICS TEACHING AND LEARNING 269

grasping handshapes over the s symbols on the two sides of the equation. With
this last gesture, she expresses the metaphor of taking objects away—reflecting
the ARITHMETIC IS COLLECTING OBJECTS metaphor described by Lakoff and
Núñez (2001)—to give meaning to the principle of subtracting equal quantities
from both sides of an equation.

These examples illustrate teachers’ use of metaphoric gestures to represent
specifically mathematical content. In other cases, speakers utilize metaphoric ges-
tures to express other nonmathematical conceptual metaphors that are involved in
some mathematical problems. The following example is taken from a college stu-
dent who was asked to describe the gist of a mathematics word problem to another
participant (drawn from the study described in Alibali et al., 1999). The problem
was as follows:

After a seven-day harvest, a potato farmer notices that his rate of gathering potatoes
increased steadily from 35 bushels/day to 77 bushels/day. How many bushels of
potatoes total did the farmer collect during the seven-day harvest?

In describing this problem, the student utilizes a gesture that reveals the
metaphor TIME PASSING IS MOVEMENT IN SPACE (Boroditsky, 2000; see also
Núñez & Sweetser, 2006), shown in Figure 8.

FIGURE 8 Metaphoric gesture for “seven-day harvest” based on the metaphor TIME

PASSING IS MOTION THROUGH SPACE.
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Student: How many would be the [total] if the [seven-day period] was
1 2

[increasing at a constant rate]
3

1. Both palms sideways on the table facing center, approximately 12” apart
2. Right-hand palm sideways on table in front of self, makes two hops to the right

(represents seven-day period)
3. Right-hand palm sideways on table in left neutral space, sweeps to the right

The target gesture for the present purposes is the second gesture in the
sequence, which depicts the days of the harvest, moving through time from left
to right. Her gesture is a physical realization of the time period of a 7-day harvest
moving through space.

As these examples illustrate, evidence from metaphoric gestures can provide
evidence for the “psychological reality” (Núñez, 2008) of conceptual metaphors.
Evidence from teachers’ and learners’ talk about mathematics provides evi-
dence both for conceptual metaphors that underlie mathematical concepts and for
conceptual metaphors in other domains.

GESTURE IN TEACHING–LEARNING INTERACTIONS

Thus far, we have provided illustrative examples of three types of gestures that,
we argue, manifest the embodiment of mathematical knowledge. The examples
are drawn from teachers’ instructional explanations (Figures 2, 3, 5, and 6) and
students’ elicited explanations of their thinking about various mathematical prob-
lems (Figures 1, 7, and 8). To conclude, we present an example of an extended
sequence of interaction between a teacher and a student to illustrate that all three
of the types of gestures we have discussed occur routinely in teacher–student talk
about mathematical ideas. The full (speech and gesture) transcript of the excerpt
is provided in the Appendix.

The excerpt is drawn from a corpus of tutorial interactions that we staged to
investigate gesture in teacher–student interactions (the same corpus from which
the example in Figure 3 was drawn). The teacher is working individually with a
student on the concepts of slope and y-intercept as they apply to graphs and equa-
tions. The lesson centered on a story problem involving the school band earning
money by selling candy bars. The band earns $2 for each candy bar, and at the out-
set of the tutorial, the scenario is represented with the equation y = 2x. The teacher
was asked to work with each student to represent this equation on a graph. The
teacher was also asked to alter the story problem in two ways, once by changing
the amount earned for each candy bar from $2 to $4 (altering the slope) and once
by including a $15 donation from a parent when the band began selling candy bars
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EMBODIMENT IN MATHEMATICS TEACHING AND LEARNING 271

(altering the intercept). The teacher was asked to work with the student to alter
both the equation and the graph for each of these changes to the story. Finally,
the teacher was asked to discuss with the student how slope and y-intercept are
represented in the equation and the graph.

This excerpt begins with a “trouble source” (Seedhouse, 2004) in the teacher–
student discourse—that is, a place where the student reveals a lack of understand-
ing of the material. At this point in the tutorial, the teacher and student had graphed
all three lines (y = 2x, y = 4x, and y = 2x + 15), as in Figure 4 . The teacher asks
the student to state the slope of the line y = 2x + 15, and the student provides
an incorrect response, stating the y-intercept (15) rather than the slope (2; Line
2 in the Appendix). In past research, we showed that teachers use more gestures
in the utterances that follow trouble sources than the utterances that precede them
(Alibali & Nathan, 2007), suggesting that gesture is one tool that teachers use as
part of their effort to communicate effectively.

Throughout this excerpt, both teacher and student use pointing gestures to
ground their speech to the inscriptions of the equations and graphs with which
they are working. When the student offers the incorrect answer (15), the teacher
asks how she knows that, seeking to elicit more information about the student’s
thinking. The student responds by pointing to the equation that represents the line
and emphasizes the 15 in that equation, both in her speech and in pointing gestures
that trace under the 15 (Line 4, depicted in Figure 9.

The teacher responds to this trouble source with an extended explanation about
slope and y-intercept that includes many pointing gestures. Noteworthy among

FIGURE 9 Pointing gesture: The student indicates 15 in the equation.
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272 ALIBALI AND NATHAN

FIGURE 10 Simultaneous pointing gestures to corresponding aspects of related representa-
tions: The teacher indicates the y-intercept (15) in the equation and the y-intercept on the graph
(0, 15).

these are the simultaneous pointing gestures the teacher uses to highlight the rela-
tionship between the 15 in the equation (which had been the student’s focus of
attention) and the y-intercept (0, 15) (Line 23, shown in Figure 10). These pointing
gestures both indicate the referents of the teacher’s speech and, by virtue of their
simultaneity, highlight the link between the 15 in the equation and the y-intercept
of the graph.

The teacher also uses representational gestures at several points during this
excerpt. At one point, she seeks to differentiate the slope and intercept, saying, “It
(y-intercept) is not the same thing as slope, because the slope tells us how tilted our
line looks” (Line 25). With this utterance, the teacher produces a representational
gesture that depicts a line as if holding it between her palms and simulates altering
the slope of the line from more steep to less steep and back by shifting the angle
of her wrists in unison. This gesture is depicted in Figure 11. During the excerpt
the teacher also uses several other representational gestures, many of which are
performed over the graph, and therefore also include a pointing component (e.g.,
Gesture 21, which involves tracing gestures over the two lines with the same slope,
y = 2x and y = 2x + 15).

At several points during this excerpt, the teacher also uses metaphoric gestures
that reflect the metaphor QUANTITY IS (HORIZONTAL) DISTANCE.When talking
about how much money was donated by a parent (which gives the y-intercept for
the line), the teacher uses a gesture that depicts a bounded horizontal space (Line
26, seen in Figure 12). She also makes a similar gesture at two other points earlier
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FIGURE 11 Representational gesture that simulates action on a mathematical object:
Moving line to different slopes.

FIGURE 12 Metaphoric gesture for “how much money was donated” based on the metaphor
QUANTITY IS HORIZONTAL DISTANCE.

in the excerpt when talking about how much money was made for each candy bar
(Gestures 14 and 20 in the Appendix).

Following her explanation of y-intercept and how it differs from slope, the
teacher asks the student to tell her the y-intercept of another line (y = 4x), and the
student makes the same error as before (!) but offers her incorrect answer some-
what uncertainly (Line 30). The teacher states that the student’s answer reflects
the slope and then asks again about intercept, using much more scaffolding—both
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274 ALIBALI AND NATHAN

verbal (“How much money did we start with though? Where does this red line
cross this y-axis?”) and gestural (she traces the target line and the y-axis, culmi-
nating at the y-intercept, which is the correct answer!; Line 35). Now the student
offers the correct answer, but in a questioning tone (Line 36). The teacher then
asks the student to state the y-intercept of another line (y = 2x). This time, the stu-
dent answers correctly, with a more certain tone in her voice (Line 39), indicating
that she has successfully repaired the initial trouble source.

This excerpt is representative of many episodes of teacher–student interaction
that we have observed in that the teacher uses gesture extensively in commu-
nicating instructional material, especially in response to trouble sources in the
discourse (Alibali & Nathan, 2007). As in other cases we have studied (Alibali
et al., 2011), pointing gestures predominate, but representational gestures and
metaphoric gestures are also common. Teachers and students use gestures to
ground the co-occurring speech by establishing reference, to simulate actions
and perceptions, and to express body-based metaphors that are relevant to the
instructional material.

DISCUSSION

In this article, we have provided theoretical arguments and illustrative examples
to show that (a) pointing gestures manifest grounding in the physical or imagined
environment, (b) representational gestures manifest mental simulations of action
and perception, and (c) metaphoric gestures reveal conceptual metaphors that are
grounded in the body and human experience. All of these types of gestures rou-
tinely occur in discourse about mathematical ideas, for example in instruction and
explanation.

Gestures of these types in mathematical discourse provide evidence that mathe-
matical thinking is embodied in several important senses. Evidence from pointing
gestures produced by teachers and students suggests that mathematical thinking is
grounded in the physical environment, which includes mathematical inscriptions
that are perceptually available to both speakers and listeners. Evidence from repre-
sentational gestures suggests that mathematical thinking involves simulations of
actions on mathematical objects, simulations of visual images of mathematical
ideas or inscriptions, and simulations of the real-world situations that mathe-
matical problems address. Finally, evidence from metaphorical gestures supports
the “psychological reality” of conceptual metaphors that underlie mathematical
concepts, as well as conceptual metaphors in other domains (e.g., time). Taken
together, these three lines of evidence support the claim that embodied knowl-
edge is an integral component of mathematical thinking and learning. Gestures
thus provide a unique and informative source of evidence regarding the nature of
mathematical thinking.
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We have argued that gestures reflect speakers’ embodied thinking about math-
ematical concepts and procedures, and we further suggest that they may also play
a crucial role in communicating embodied knowledge to learners. Thus, studying
the gestures produced in mathematics instruction and teacher–student interaction
may shed light not only on the nature of mathematical thinking but also on the
mechanisms involved in learning from instruction. Students may construct under-
standing by generating simulations that are informed by the simulated actions that
their teachers express in gestures (see Alibali & Hostetter, 2010).

Gestures may also play a role in mathematical thinking by externalizing aspects
of speakers’ mathematical knowledge. In so doing, gesture may help learners to
manage the working memory demands of mathematical thinking and explana-
tion (e.g., Alibali & DiRusso, 1999; Goldin-Meadow & Wagner, 2005; Wagner,
Nusbaum, & Goldin-Meadow, 2004). Although we have not focused on this poten-
tial role of gesture in this article, this view is not incompatible with the embodied
framework we embrace here. Gestures that externalize information may serve
to ground speakers’ utterances in the physical environment. In doing so, such
gestures may also off-load aspects of cognitive processing onto the environment
(Kirsh & Maglio, 1994), thereby lightening speakers’ processing load.

Implications for Research in the Learning Sciences

Our perspective aligns with several themes that are central in contemporary
research in the learning sciences (see Nathan & Alibali, 2010, for discussion).
The first such theme is the attempt to bridge the divide between research and prac-
tice. Practical connections to educational practice can be drawn from research on
embodied mathematical knowledge and how it is expressed in gesture. An embod-
ied perspective provides a framework for interpreting students’ and teachers’
behaviors as they behave and communicate in classroom settings and can also
yield predictions about the effects of certain instructional practices. For exam-
ple, instructional experiences that involve actions on manipulatives may lead to
knowledge that children readily express in gestures that simulate those actions—a
prediction we are testing in ongoing research.

A second theme of contemporary research in the learning sciences is the impor-
tance of analyzing teaching and learning in authentic settings. An embodied
perspective offers a unique lens for considering aspects of learners’ and teach-
ers’ behavior in ecologically valid, real-world settings, such as classrooms and
tutoring sessions. Many of the examples we have presented in this article were
drawn from such settings. The embodied perspective acknowledges the inherent
complexities of learning and teaching in real-word settings and provides a frame-
work for analyzing the action and communication that take place in such settings
in an effort to deeply understand processes of knowledge change.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

is
co

ns
in

 -
 M

ad
is

on
],

 [
. M

itc
he

ll 
J.

 N
at

ha
n]

 a
t 1

0:
46

 0
1 

M
ay

 2
01

2 



276 ALIBALI AND NATHAN

A third theme of contemporary research in the learning sciences is its empha-
sis on the behavior of learners in interaction with the physical, social, and cultural
world, including semiotic and technical resources. Research on embodied mathe-
matical knowledge takes seriously the situated nature of knowledge in the context
and setting where it occurs and, in particular, its grounding in the actions of a phys-
ical body that has particular sorts of perceptual systems as it engages with objects
and symbols in the physical environment, which is itself culturally situated and
includes certain semiotic and technical resources. Many of the examples we have
presented in this article describe how teachers and learners use gestures to ground
mathematical symbols (which are culturally defined semiotic resources) in the
physical environment and in the actions of the body. Gestures and speech reveal
both learners’ and teachers’ knowledge and exhibit the ways in which physical,
social, cultural and semiotic resources are recruited during learning and instruc-
tion. Thus, an embodied perspective recognizes that learning and teaching are
multimodal interactions that occur in rich communicative contexts and that draw
on prior knowledge as well as resources present in the physical environment and
the broader cultural context.

Ties to Research on Teaching Practices and Teacher Education

In this article, we have proposed a framework that addresses both gestures pro-
duced by learners and those produced by teachers. However, we believe it is also
important to acknowledge the special pedagogical nature of communication by
teachers. Teachers are generally charged with communicating novel concepts and
procedures to learners. Despite the integral role of gesture in instructional com-
munication, teachers’ gestures have not been a central focus of education research
(Roth, 2002). This situation persists despite a rich tradition of studying how other
aspects of teachers’ knowledge and behavior may foster student learning (e.g.,
Carpenter, Fennema, Peterson, Chiang, & Loef, 1989; Hill, Rowan, & Ball, 2005;
Peterson, Carpenter, & Fennema, 1989; Shulman, 1986; Zeichner, 1999).

The lack of attention to gesture in teacher education methods courses is
also striking. Methods courses generally prescribe approaches for classroom
instruction, addressing topics such as delivering lessons, facilitating classroom
discussion, introducing and conducting activities, performing assessments, and
managing the classroom (e.g., Abell, Appleton, & Hanuscin, 2010; Feden &
Vogel, 2003). When one delves further into the instructional strategies offered
to pre-service teachers (e.g., Manning & Bucher, 2009), one finds an overwhelm-
ing emphasis on the verbal channel. In our view, there should be a place in teacher
education for the consideration of how speech and body-based resources such
as gesture can work in concert to implement effective and engaging instruction
that promotes deep understanding of fundamental ideas in mathematics and other
content areas.
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Conclusion

In this work, we have identified three ways in which teachers and students use
body-based resources, specifically gestures, in teaching and learning settings:
(a) Pointing gestures reflect the grounding of cognition in the physical environ-
ment, (b) representational (i.e., iconic and metaphoric) gestures manifest mental
simulations of action and perception, and (c) some metaphoric gestures reflect
body-based conceptual metaphors. In carrying out this work, we seek to advance
efforts at developing empirically supported methods for improving the educa-
tional experiences of students and teachers. At the same time, we seek to advance
understanding of the nature of mathematical thinking, how it changes with devel-
opment and learning, and how it is fostered through instruction. We believe that
an embodied account of mathematical thinking, instruction, and communication
holds promise for integrating understanding of cognitive processes and behavior
in the real-world social and physical interactions where learning occurs.
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APPENDIX

Table A-1
Transcript of Teacher–Student Interaction

Line Speech Transcript + Gesture Number(s) Gesture Transcript

1 T: [What’s the slope of the blue line?]
1

1. RH point traces up and down blue line

2 S: [Fifteen.]
2

2. RH point to 15 in y = 2x + 15 equation next
to line

3 T: How do you know that? No gesture

4 S: Because [two] [times][what] [equals],
3 4 5 6

[plus fifteen].
7

3. RH point to 2 in y = 2x + 15
4. RH point to x in y = 2x + 15
5. RH point to x in y = 2x + 15
6. RH point to 15 in y = 2x + 15
7. RH point traces under + 15 in y = 2x + 15

5 T: Okay. No gesture

6 S: Because, [the equation said, you
8

started off at fifteen, so our slope should be
fifteen.]

8. RH point traces under 15 several times

(Continued)
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Table A-1
(Continued)

Line Speech Transcript + Gesture Number(s) Gesture Transcript

7 T: [Ah, okay.] You’re keying into
9

[something else] that’s [close to slope]
10 11

but not quite the same.

9. RH point in neutral space, in general
direction of graph, beats up and down
2 times

10. RH point in neutral space, in general
direction of graph, beats up and down

11. RH point in neutral space, in general
direction of graph, beats up and down

8 T: [Remember] [our slope] was [how
12 13 14

much] we made for every candy bar we
sold?

12. LH point in neutral space, beats up and
down

13. LH point in neutral space, beats up and
down

14. BH C handshapes oriented toward center
in neutral space

9 S: Mmhm. No gesture

10 T: So [we made two dollars for every
15

candy bar we sold here.]

15. BH points, LH held at origin (0,0), RH
point traces from origin to end of black
line (y = 2x), back to origin and then back
to end of line again

11 T: [On the red line we had four dollars for
16

every candy bar we sold.]

16. BH points, LH held at origin (0,0), RH
point traces from origin to end of red line
(y = 4x), back to origin and then back to
end of line again

12 T: [How much did we make for every
17

candy bar in the blue line?

17. BH points, LH held at y-intercept (0,15),
RH point traces from origin to end of blue
line (y = 2x + 15), back to origin, back to
end of line, and back to origin again, and
held through student’s response and
reiteration of student’s response

13 S: Two. No gesture

14 T: Two dollars]. Yeah, so even though it
17 (held from before)

started at [fifteen], the slope is still gonna
18

be [two dollars], ‘cause we made [two
19 20

dollars each time].

18. BH points to y-intercept (0, 15)
19. RH point along line from y-intercept (0,

15) to (1, 17)
20. BH palms toward center in neutral space,

move slightly left (metaphor for amount
made each time)

(Continued)
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Table A-1
(Continued)

Line Speech Transcript + Gesture Number(s) Gesture Transcript

15 S: ‘Kay. No gesture

16 T: And [so these slopes are actually the
21

same].

21. RH point at (0, 0), LH point at (0, 15), RH
traces along line y = 2x and back to (0, 0),
and simultaneously LH traces along on
line y = 2x + 15 and back to (0, 15)

17 T: But [like you mentioned], there’s a
22

[fifteen in there].
23

22. RH point to student
23. LH point to 15 in y = 2x + 15, taps 3x

18 T: And I like how you mentioned that
‘cause the [fifteen actually is what we call

24
our y-intercept].

24. RH point to y-intercept (0, 15), holds

19 S: Mmhm. No gesture

20 T: So [‘member all along this axis like you
25

labeled], [this is called our y-axis].
26

25. RH point to top of y-axis, held, then LH
point added to same spot

26. LH held at top of y-axis, RH point traces
along y-axis to origin (0, 0)

21 T: [Whenever a line crosses through] [this
27 28

y-axis], [we call it] a y-intercept.
29

27. RH point at top of line y = 2x + 15, traces
along line past y-axis and continues

28. RH point to y-intercept (0,15), slight
back-and forth motion over point

29. RH point moves to origin (0, 0), LH point
at top of y-axis, traces down along y-axis
to y-intercept (0, 15)

22 T: [So this blue line crosses through the
30

y-axis at fifteen.

30. RH point at top of line y = 2x + 15, traces
along line to just past y-axis, then holds at
(0, 15)

23 T: So that’s where that fifteen [is coming
31

in.]

31. RH point still held (from previous gesture)
at (0, 15), LH point to 15 in equation, tap

24 T: [We call it a y-intercept.]]
32

32. RH point still held (from previous gesture)
at (0, 15), LH hand cupped toward up in
neutral space (conduit metaphor)

(Continued)
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Table A-1
(Continued)

Line Speech Transcript + Gesture Number(s) Gesture Transcript

25 T: It’s [not the same thing as slope]
33

because the slope tells us [how tilted our
34

line looks].

33. LH hand cupped toward up in neutral
space, beats down/up (conduit metaphor)

34. Both palms toward center (as if holding a
line in between them) over graph,
depicting a steeper line, then a shallower
line, then a steeper line

26 T: But the [y-intercept] is gonna tell us
35

[how high it started], or [how much
36 37

money was donated] in the first place.

35. BH points on line y = 2x + 15, move
toward y-intercept

36. BH point at y-intercept (0, 15), tap
37. BH palms toward center in left neutral

space, about 6” apart

27 S: Mmkay. No gesture

28 T: So the [y-intercept on the blue line is
38

fifteen].

38. RH point to y-intercept (0, 15), moves
about slightly

29 T: [What is the y-intercept on this red
39

line?]

39. RH point traces over line y = 4x from top
of line down to origin (0, 0)

30 S: Four. No gesture

31 T: Four? And how’d you get that? No gesture

32 S: Because we [made four dollars]?
40

40. RH point (holding marker) to line
y = 4x, trace a short portion of the middle
of the line

33 T: That would [be our slope.]
41

41. RH point in neutral space, toward center,
beats once

34 S (at the same time): [The money].
42

42. RH point (holding marker) to line
y = 4x, trace a short portion of the middle
of the line (repeat of previous gesture)

35 T: How much money did we start with
though? Where does [this red line cross

43
[this y-axis]]?

44

43. RH point traces line y = 4x from top down
to origin (0, 0) and slightly beyond, then
hold

44. LH point traces y-axis from top down to
origin (0, 0)

36 S (questioning tone): Zero? No gesture

(Continued)
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Table A-1
(Continued)

Line Speech Transcript + Gesture Number(s) Gesture Transcript

37 T: Zero. So [the y-intercept is actually
45

zero on here], [and the slope is four].
46

45. RH point to (0, 0), tap several times
46. RH point traces from origin (0, 0) to top of

line y = 4x

38 T: [How ‘bout the y-intercept on this
47

black line?]

47. RH point traces line y = 2x from top down
to slightly past origin (0, 0) and hold there

39 S (more certain tone): Zero. No gesture

40 T: Zero. So [both of these lines start at
48

zero] because [no one donated money in
49

those two cases][to start off with].
50

48. BH points, RH on y = 2x, LH on y = 4x,
trace to top of line and then back to origin
(0, 0)

49. BH palms down, move apart in neutral
space

50. BH points to origin (0, 0)

Note. T = teacher, S = student, RH = right hand, LH = left hand, BH = both hands.
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