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Introduction

Technology has become essential to the practice of math-
ematics. Technology allows some areas of mathematics to
flourish, such as the close relationships between fractal
geometry with computer graphics, and statistics with
computer programs (Ben-Zvi and Garfield, 2004; Frame
and Mandelbrot, 2002). Technology also plays a special
role in the learning of mathematics. Technology supports
for mathematics education largely reflect the form and
shifts of underlying theories of learning and intellectual
behavior. Information processing (IP) theory and theories
of cognitive skill acquisition and concept learning have
been dominant influences in mathematics education for
the last half century, and these are presented in the first
section titled ‘Skills and concept learning” While these
traditional cognitive perspectives on knowledge and
learning continue to play a significant role in governing
the types of technological resources for mathematics edu-
cation (as well as shaping curriculum, instruction, and
assessment practices more broadly), increasingly, designs
of educational technology are being influenced by
emerging theories of learning and practice. The second
section titled ‘Mathematical discovery’ focuses on tech-
nologies that support learning by discovery. In the third
section titled ‘Collaborative problem solving,” collabora-
tive learning technologies are presented that often draw
on situated, social, and cultural perspectives of learning
and constructivist views of knowledge. The fourth section
titled ‘Embodied cognition’ reviews some of the newest
technologies in craft and fabricaton, inspired by
emerging views of embodied cognition. Some systems
appear in multiple places within this simple taxonomy.
In the final section ttled ‘Challenges facing technology
supports for acquiring mathematics,’ some of the persis-
tent challenges facing technologies for mathematical
learning are discussed.

Skills and Concept Learning

There is a rich history of tools specifically designed for
mathematics instruction, including formal systems of
manipulatives such as Dienes’ blocks, pattern boards,
and Cuisenaire rods. Manipulatives are concrete objects
that are designed to help students learn math concepts by
representing the quantities, operations, and relations
between quantities without requiring that the learner

use or comprehend the written (ie., formal) representa-
tions of the same concepts (Uttal, 2003).

Generally, the use of math manipulatives as educa-
tional aids is predicated on a view of learning as the
acquisition of skills and abstractions (Chao er 4/, 2000).
The mental tool view frames learning as the acquisition of
skills and symbolic structures that parallel the physical
states and actions of the objects. Learning from this per-
spective typically favors highly structured and consistent
practice to enable the acquisition and speedup of proce-
dures, which may eventually become automated. In the
abstraction view, math learning is facilitated through gen-
eralization across a range of varied experiences that all
model a common concept. This form of learned behavior
tends to exhibit slower and more deliberate responses that
are highly accurate, along with more frequent use of
rudimentary strategies. Even with these trade-offs in
mind, the research literature does not consistently show
an advantage for manipulatives for math learning among
primary grade students (e.g., Hiebert, 1989; Sowell, 1989;
Uttal er al,, 1997).

Computer-based manipulatives and other instruc-
tional tools have emerged to capture the concrete quali-
ties of materials along with the added control and
flexibility of digital media. One of the earliest and most
influential was Logo, which can be regarded as the for-
bearer of computers as microworlds, and objects-to-think-
with. In a somewhat parallel fashion, graphing calculators
emerged as hand-held tools for math activity and math
instruction. These early forms also spawned computer
algebra systems and more free-form modeling tools,
such as Geometric Supposer and Geometer’s Sketchpad.

Hand-Held Graphing Calculators

The first graphing calculator was introduced by Casio in
1985. However, graphing calculators exhibited a much
greater influence on classroom learning in the early 1990s,
with contributions from Hewlett-Packard and Texas
Instruments (TT). The TI-82 (released 1993) and the ubiq-
uitous TI-83 (1996; see Figure 1) transformed secondary
and tertiary math education by putting into students’ hands
an affordable, portable, and accessible device that allowed
them to analyze, program, and visualize mathematical pro-
cedures and structures. By the year 2000, over 80% of high-
school mathematics teachers in the US who were surveyed,
reported using hand-held graphing calculators in their
classrooms (Hudson ez 4/, 2002).
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Figure 1 Classroom teacher and students using the TI-83-Plus
hand-held graphing calculator by Texas Instruments. Photo
courtesy of Texas Instruments Education Technology.

Hand-held graphing technology has the potential to
change the nature of mathematics instruction and learn-
ing, as well as alter the very content of the mathematics
that gets taught in schools (Waits and Demana, 1994,
2000). However, reviews of US textbooks exhibit a fairly
simplistic use of the technology (Burrill, 2004; Senk ez 4/,
unpublished).

Internationally (in studies of Great Britain, Sweden,
France, Australia, New Zealand, South Africa, Israel,
Netherlands, and the United States), hand-held graphing-
technology use generally facilitates learners’ concept
development and its use is predictive of higher perfor-
mance gains and measures of problem-solving skills.
Those who use graphing calculators show a better under-
standing of functions, applied problem solving in algebra,
and interpreting graphs (Burrill ez 4/, 2002).

Studies suggest that the increased conceptual learning
that accompanies use of graphing calculators does not
come at the expense of building facility in procedural skills
(Burrill, 2004). Frequent use of graphing calculators tends to
accompany more graph use and greater flexibility with
representations, solution strategies, and reasoning with real
data. More broadly, classrooms with graphing calculator use
tend to foster a more constructivist climate, with more con-
jecturing, more frequent use of multiple solutions, and higher
levels of discourse than those classrooms with infrequent
calculator use. Using graphing technology for nonroutine
activities, such as mathematical discovery and complex prob-
lem solving, tends to support increased conceptual under-
standing and higher achievement, while use of technology for
routine calculations does not (Dugdale ez al, 2004).

Computer Algebra Systems

The next major breakthrough was the incorporation of
computer algebra systems (CASs) into calculators. The
CASs allow users to perform mathematical operations on

symbolic expressions in support of problem solving, gen-
eralization, and reasoning about functions. The CAS
made its way into hand-held calculators in the late
1980s with the HP-28, but it was when both Casio (the
FX2.0, released in 1996) and TI released new models
(the TI-92, released in 1995, and the TI-89 in 1998) that
the technology became more affordable and more preva-
lent among high-school and then middle-school classes.

The promise is that CAS allows learners and teachers to
focus on conceptual aspects of expressions and functions
(Heid, 1988; Pierce and Stacey, 2007) rather than getting
caught up with the mechanics of symbol manipulation, a
benefit that may help low-performing students, in particu-
lar (Kuzler, 2000). The research does support this view,
generally, though, as with other forms of calculators and
technology, more generally, these influences are mediated
by the types of lessons and instructional approaches. Scho-
lars have shown that calculus students within conceptually
oriented classrooms who used CAS demonstrated more
conceptual knowledge than those who had skills-oriented
lessons (Heid, 1988; Palmiter, 1991). CAS implemented in
conjunction with other standards-based practices such as
sense making and group discussions also supports college
students’ understanding and reasoning with symbolic
expressions (Keller and Russell, 1997).

Geometric Supposer

In addition to support for skills in computation and sym-
bol manipulation, there are powerful tools such as Geo-
metric Supposer for supporting skills and concept
development in geometric reasoning. Geometric Suppo-
ser 1s designed to support exploration and discovery of
properties of Euclidean (plane) geometry by providing
primitive operations for drawing, analyzing, measuring,
and manipulating diagrams. Generalization across cases
(induction) is supported by repeating operations on arbi-
trary exemplars, an experience which may assist students
in formulating deductive proof. Geometric Supposer is
one of the clearest examples of a system that instantiates
many of the ideals of the constructivist philosophy of
mathematics education because it allows direct access
and construction to otherwise abstract objects, proce-
dures, and concepts.

Although students typically struggle with using geo-
metric diagrams, year-long use of Geometric Supposer
has resulted in improvements with diagrams and students’
understanding of the objects to which they refer, as well as
the variety of ways that diagrams can be viewed and
described (Yerushalmy and Chazan, 1990).

Cognitively-Based Tutoring

Some of the most exciting and well-researched technology-
based systems come from the class of intelligent tutoring
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systems (I'TSs). Drawing from cognitive science, artificial
intelligence (Al), and expert systems, I'TSs typically insti-
tute an expert module that contains, usually in rule-based
form, knowledge of the skills involved in successful prob-
lem-solving behavior, and previously identified bugs, or
common errors, in the rules of learners. In the I'TS instruc-
tional model, the learner engages in problem solving while
the expert module tracks learner behavior. Erroneous steps,
recognized through pattern matching by the rule-based
expert module, are usually met with immediate feedback,
in keeping with the theory of the acquisition of cognitive
skill. The expert module can also provide context-specific
hints, or help, and offer an expert-level solution to the
problem (Anderson, 1988).

While there are many I'TSs, those derived from Anderson’s
(1996) ACT theory — the Cognitive Tutors —are of particular
interest because of their strong theoretical and empirical
support, and because the essential architecture has proven
so resilient over time and across a range of mathematical
domains and age groups. Cognitive Tutors (Figure 2)
provide differentiated instruction in pre-algebra, algebra
I and II, geometry, and integrated mathematics to 500 000
students in around 2600 US middle schools and high

B - Linear Models and Two Ouackrant Graphs

schools. Current systems incorporate classroom curricula
(often 3 days per week), technology-based instruction and
practice (2 days per week), and teacher professional devel-
opment. Students engage in explanation-based reasoning,
as well as goal-directed problem solving.

A number of empirical studies have established the
effectiveness of this approach (see Ritter er al, 2007, for
a review). For example, Algebra I students in Pittsburgh,
PA and Milwaukee, WI, who used the tutor showed
superior gains from their peers overall, particularly on
performance-based tests of problem solving and uses of
multiple representations (Koedinger ez al, 1997).

Mathematical Discovery

As educational researchers more fully embraced expanded
and alternative views of knowledge and learning such as
constructivism (e.g., Cobb er a/, 1992) and situated cogni-
tion (e.g, Brown er 4/, 1989), these have been reflected in
the designs of educational technologies. New technologies
were designed to be student centered, to draw directly from
students” own knowledge of mathematical and physical
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Figure 2 A series of hints, followed by direct instruction provided to a student using the Algebra Cognitive Tutor developed by
Carnegie Learning, Inc. Adapted from Koedinger, K. R. and Aleven, V. (in press). Exploring the assistance dilemma in experiments with

Cognitive Tutors. Educational Psychology Review.
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phenomena, and to put more responsibility of discovering and
articulating connections between representations and across
representation, math concepts, and procedures. Technolo-
gies that emphasize the interconnections among representa-
tons and the distributed nature of knowledge as it exists
between the student and the technology also lead to different
types of activities and they reconceptualize the aims of math
education as one of learner-centered making meaning.

Logo

Logo (Papert, 1980) is both a computer programming
language and a microworld, a designed learning environ-
ment to promote mathematical reasoning and problem-
solving skills through an innovative process of directing
the actions of a mathematical creature called the Logo
turtle. The turtle can move forward or backward, stop, and
rotate to the left or right, and raise and lower its pen in
response to programmed commands. Although the origi-
nal turtle was a physical robot that ran along the floor
or paper, in later versions it was replaced by a graphical
turtle on a computer screen.

The Logo environment offers a way for the child to
externalize mathematical ideas and procedures and proj-
ect them onto the actions and properties of the turtle and
the Logo programming language (Eisenberg, 2003). Yet, it
also becomes an object-to-think-with (Resnick ez al, 1996)
and has been used to conceptualize many areas of mathe-
matics, including modern algebra and group theory,
computer science, cybernetics, as well as Euclidean and
non-Euclidean geometry (Abelson and diSessa, 1981).

Logo has long been a tool for doing mathematics and
mathematics instruction, and there 1s a large collection of
empirical studies investigating its impact on mathematics
learning, teaching, and discovery. For example, fourth
graders familiar with Logo programming were better
able to apply what they learned and elaborate on their
procedural interpretations of geometry concepts than
those taught from an inquiry-based approach (Lehrer
et al, 1989). In other studies, Logo improved students’
use of geometric models in other areas of mathematics,
generalization and abstraction of geometric operations,
and improved complex reasoning along with more general
cognitive skills (Battista and Clements, 1991; Clements
and Battsta, 1991, 1992; Lehrer and Littlefield, 1993).

As 1s the case with educational technology, more
generally, the effects of Logo have as much to do with
the teaching and the engagement of the students, as the
technology itself (Kozma, 1991, 1994; though also see
Clark, 1983, 1994).

The essential ideas conveyed in Papert’s (1980) original
work, Mindstorms, inspired a broad range of technological
designs for learning and instruction, including: StarLogo,
which uses concepts of parallel computation to introduce
participants to the computational and cognitive aspects of

modeling complex, dynamic systems (e.g, Colella ez al,
1999); and the NetLogo Project (reviewed below) at
Northwestern University and The University of Texas
at Austin (Wilensky, 1999; Wilensky and Stroup, 1999),
which supports distributed computing.

Function Probe

Function Probe (Confrey and Mahoney, 1991, 1996) was an
early and highly influential technology design for math
education to come under the constructivist paradigm.
Function Probe integrated a user-friendly calculator with
tabular, graphical, and symbolic representations of phe-
nomena to promote the active construction of mathemati-
cal understanding for high-school algebra, trigonometry
and functions, and high school and college pre-calculus,
as well as integrated math and science instruction. Data
could be entered in by students or imported using external
sensors. Operations on one representation were reflected as
changes in other, linked representations, thus promoting
representational fluency (Nathan ez 4/, 2002). The system
follows one of Kaput’s (1989) observations, that mathemat-
ical meaning making is actually built upon the ability
to translate within and among various representations,
and that fundamentally, meaning is based on a “relational
semantics” between “linking representations” including
internal mental representations and physical systems as
well as tables, symbols, and graphs (p. 168). Function
Probe also provided a modeling environment that allowed
students to articulate and explore their own conceptions
of mathematical and physical events as a means toward
advanced understanding (Confrey and Doerr, 1994).

ANIMATE

The ANIMATE system presented another alternative to
cognitive skill acquisition and the intelligent tutoring sys-
tem paradigm. [t was presented as an unintelligent tutoring
system to emphasize that the program contained no exert
module and made no attempts at modeling or tracing the
knowledge states of the student (Nathan, 1990). Instead,
ANIMATE assumed knowledge was distributed among
the interactions between the student and the system.

The focus of ANIMATE was on student discovery of
quantitative representations for modeling and solving
algebra story problems involving systems of equations,
including those for distance-rate time (e.g, collision and
overtake) problems, combined work, and compound in-
terest. In ANIMATE, a student constructed the algebraic
equations that drove an animation of the referent story
problem situation (e.g., planes flying at different rates and
leaving at different times). Because of the direct causal
link between the formal expressions of the algebraic solu-
tion (the mathematical symbols and structures to be
learned) and the animation (the situation-based meaning
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of the mathematical expressions), animated actions that
were inconsistent with the student’s mental model of the
story situation suggested errors in the proposed solution
representations, the nature of which were highly con-
strained by the type of misbehavior. This interlinking of
students’ thinking and the control of the system is illu-
strated conceptually in Figure 3. Students first proposed
and then iteratively debugged their algebraic representa-
tions and tested them until an acceptable situation was
depicted in the animation. Neither the student nor the
system could solve the problems and make meaningful
connections on their own. In this way, the intelligence was
not localized solely in the computer program or in the
learner, but rather from the intelligent interactions
needed to bring the mathematics and animation in line
with the student’s mental model of the story problem.

Students who used ANIMATE learned to reason
explicitly about the situations described in typical word
problems, and performed better on paper-and-pencil
transfer tasks. The ANIMATE users also tended to spon-
taneously correct their own algebraic errors during prob-
lem solving in far greater frequency than control subjects
(Nathan ez al, 1992; Nathan, 1998).

Dynamic Geometry Systems

Dynamic Geometry computer software such as
Geometer’s Sketchpad (Finzer and Jackiw, 1998) and
Cabri Géometre (Laborde, 2000), along with Geometric

Supposer mentioned above, offer alternatives to conven-
tional proof-based explorations of geometry by support-
ing direct manipulation, tracing, and visual forms of
thinking without the prior stage of re-representing the
intended actions into natural or formal languages.

Classroom observations of Cabri use show that junior
high school students in Japan using Cabri are more
inclined to explore the propositions and theorems directly
through construction and manipulation than under the
traditional curriculum, they better visualize the geometric
claims, and develop a better sense of what is to be proved
(Namura, 1999).

While experimental results are scarce, studies do show
that systems such as Cabri and Sketchpad help to promote
the proper classroom environment, activities, and forms of
interactions that foster deductive reasoning among stu-
dents (Jones, 2000).

Dynamic Statistics Packages

Several recent dynamic systems allow students to delve
into data analysis activities and statistical forms of
reasoning without formal knowledge of probability and
statistics or the conventions of Cartesian graphs. Data-
oriented statistics instruction has moved into mainstream
education where it is recognized as a critical methodo-
logical tool for reasoning about data with variability,
engaging in scientific reasoning, making judgments and
evaluating claims, and being an informed citizen. This
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Figure 3 The conceptual underpinnings of learning to model story problems with the ANIMATE system.
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reflects the growing appreciation of the need to under-
stand and promote statistical literacy and reasoning
more broadly (Ben-Zvi and Garfield, 2004; Cobb, 1993;
Rumsey, 2002).

TinkerPlots (Konold, 2002) lets students approach data
analysis questions conceptually and in a constructivist
manner by providing functionality for organizing and
representing data graphically and for progressively con-
structing and deconstructing graphs in order to develop a
more grounded interpretation of the meanings intended
by the representations. It also provides several visual
methods for displaying variability and co-variation
between variables, important ideas for analysis and mod-
eling that are often difficult for students to grasp (Konold
and Pollatsek, 2002). In a similar way, Fathom (Erickson,
2000; Finzer and Erickson, 1998) supports discovery of
patterns through visually rich exploratory data analysis.

While no formal tests of the effectiveness of these
systems compared to other methods have been reported,
the approaches they offer are consistent with many of the
recent prescriptions for mathematics education offered
within current learning theory and standards-based edu-
cational reform.

Collaborative Problem Solving

Anchored Instruction uses extended collaborative groups
and digital technology to present complex, real-life
scenarios — often presented in extended, interactive
videos — to situate problems and their solutions in mean-
ingful contexts. The rich and engaging narratives serve as
the anchors and give the ensuing mathematical problem-
solving activities a meaningful connection to the world.
Anchored instruction has been used for a variety of age
groups, ability levels, and cultures.

The Adventures of Jasper Woodbury

In math education, the pioneering work on anchored
instruction was implemented in The Adventures of Fasper
Woodbury (CTGYV, 1992, 1997). Jasper was developed by
the Cognition and Technology Group at Vanderbilt
University as a series of 12 open-ended, videodisk-based
problem-solving activities that often took groups of ele-
mentary-, middle- and high school students several days
or more to formulate extended solutions to the series’
challenges. Generally, solutions required groups of stu-
dents to make multple passes through the information, a
variety of plans and computational procedures, and clarify-
ing assumptions. As one might expect, the rich contexts,
problem-solving sessions, and clarifying assumptions re-
sulted in complex solutions, no two of which were identical.

Experimental evaluations showed that students using
the Jasper program exhibited comparable performance

levels on basic mathematical concepts as matched con-
trols, but superior performance on more complex single-
and multistep word problems and multistep planning
tasks (CTGYV, 1992).

Teaching Enhanced Anchored Mathematics

Enhanced Anchored Mathematics is a form of anchored
instruction that situates problems in authentic and mean-
ingful contexts specifically to advance the problem-
solving skills of low-achieving and special-education
students, adolescents with emotional disabilities, and even
re-incarcerated adults (Bottge er 4/, 2003, 2007; Bottge and
Watson, 2002). The anchored activities tie in many of
the aspects of traditional industrial arts.

In Fraction of the Cost (Bottge ez 4l., 2002; see Figure 4),
for example, students collaborate to build a life-size skate-
board ramp with wood. Problems and information needed
to solve the problems, along with irrelevant information,
are naturally embedded in the narrative context. Students
must use a variety of planning, budgeting, construction,
and computational skills. Later, students face transfer
problems such as building a working hovercraft.

In empirical research, classroom observers witnessed
high and sustained levels of engagement among students
of all math abilities, including those with a history of
frequent off-task behaviors as they participated in mult-
step mathematical reasoning, planning, and problem
solving (Bottge er 4., 2002, 2003, 2007).

Networked Devices and Participatory
Simulations

As technology has progressed to enable networked and
distributed interactions, designers have used technology
to facilitate students’ roles in socially active, life-sized,
computational simulations of dynamic systems. Many
applications built in earlier decades have recently been
reconfigured for networked, interactive uses. Hand-held
graphing calculators, discussed earlier in the context of
concept learning and skill acquisition, now also serve
as one of the central means by which students access
distributed networks. Technicians at T, principally the
Classnet Team, are largely responsible for one of the most
widely used networking systems, the HubNet hardware,
which serves as the central computer architecture through
which distributed information is processed and aggre-
gated. Networked systems used by the NetLogo Project
at Northwestern University, The University of Texas at
Austin, and the SimCalc Project at SRI and the University
of Massachusetts at Dartmouth all draw on the TT graph-
ing calculator platform.

Participatory simulations are among the most innova-
tive of these new systems. They provide an individual,
first-person perspective from inside the system itself, and
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Figure 4 (a) A schematic diagram showing the dimensions needed to build a skateboard ramp for the Fraction of the Cost activity
from Teaching Enhanced Anchored Mathematics (TEAM). Adapted from Stephens, A. C., Bottge, B. A., and Rueda, E. (2009). Ramping
up on fractions. Mathematics Teaching in the Middle School, 14(6), 520-526. (b) A student using the TEAM system. Courtesy of Bottge.

of its emergent behaviors (Colella ez 4/, 1998; Resnick and
Wilensky, 1998). The emergent behavior of the system at a
macroscopic level and its relation to individual partici-
pant’s microscopic actions can then become the object of
collective discussion and analysis. For example, NetLogo
is a programmable modeling environment for simulating
complex systems dynamics that occur naturally in
biological and social phenomena, such as traffic gridlock
and flocking behavior. HubNet allows NetLogo to run
participatory simulations in the classroom, where a whole
class can enact the behavior of a system even while each
student controls only a small part of the system from a
networked computer or TI graphing calculator. Thus,
participatory simulation activities support new forms of
classroom interactions that explore and model complex
mathematics typical of biological and social phenomena.

SimCalc

The SimCalc Project (Roschelle and Kaput, 1996;
Hegedus, 2005) uses hand-held computer technology to
democratize access to the mathematics of change and
variation, including ideas underlying calculus (Kaput,
1994, 1997). The MathWorlds software, along with the
hand-held technology supports computation, but also can
represent mathematical ideas in ways that are important
for conceptual understanding.

As with earlier tools, such as Function Probe and
ANIMATE, the original versions of MathWorlds allows
students to primarily control the motions of animated
characters by constructing and modifying mathematical
functions represented in graphical, tabular, or algebraic
forms. Students can build up their understanding of the
mathematics by seeing how changes in formalisms lead to
changes in the corresponding animation. As an important

extension from earlier dynamic systems that support pro-
portional and linear functions, students are also asked to
model stories that correspond to piecewise linear func-
tions of familiar situations that represent different phases
of action (such as resting).

As SimCalc has matured, its capabilities to support
classroom connectivity have become more central
(Kaput and Hegedus, 2002). SimCalc leverages the revo-
lutionary aspects of wireless networked technology in
several ways. It allows teachers or students to collect and
display student responses, and thereby support large-scale
forms of classroom interaction. As a mobile form of tech-
nology, SimCalc flexibly supports new kinds of social and
participatory structures than were previously possible
with tethered systems and those that require students to
gather around a single monitor and keyboard (Figure 5).
At the core of this connectivity is the use of hub technol-
ogy that rapidly and wirelessly communicates to the tea-
cher’s computer.

SimCalc has been shown to be effective in randomized
control-group studies at the middle-school and high-
school levels. In a multiyear study of middle-school class-
rooms in Texas, SimCalc use led to statistically significant
gains each year (Roschelle er a/, 2008). Detailed analyses
showed that SimCalc students exhibited their gains on the
most advanced math concepts, while showing no concom-
itant loss on basic material.

Serious Games

Games have been a long-running source of inspiration for
mathematics activities and instruction, and gaming tech-
nology stepped easily into this practice as personal com-
puters came on the scene and advances were made in
interactivity (e.g., How the West was Wom, Burton and
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Figure 5 A teacher oversees students working with Simcalc.

Brown, 1979) and computer graphics (Green Globs; Dugdale,
1982). With the advent and popularity of video games, we
have seen emergence of a variety of studies showing
learning gains in mathematical reasoning from video game
playing (e.g, Okagaki and Frensch, 1994; Subrahmanyam
and Greenfield, 1994; Wenglinsky, 1998). While impor-
tant, these are often unconscious and indirect effects of
learning rather than the intended purpose behind the
game design.

Some educational scholars have argued that education
has much to learn from video game design (Gee, 2003/
2007; Shaffer, 2007; Squire, 2006). Serious games ex-
ploit many of the compelling attributes of video games
that have stoked their popularity. These are advanced
computer-based environments with sophisticated gra-
phics and sound that engage the learner/player with
a compelling narrative about the video environment
and support self-motivated progress, but are specifically
designed to support learning rather than entertainment.

While a few, early serious game systems exist (e.g,
Quest Atlantis, Civilization I, The Triple A Game Shouw,
Revolution, and Mad City Mystery) it is still early to point
to a body of research literature showing consistent
learning gains in mathematics from this approach. Still,
for many reasons, both theoretical and pedagogical, this is
a promising and rapidly evolving area of study (Barab
et al., 2005; Squire and Jenkins, 2003).

Embodied Cognition

One of the traditional criticisms of educational computing
1s that 1t distances students from physical, hands-on activ-
ities and experiences, and perpetuates a view of the math
learner as a disembodied information processor. With-
in the embodied cognition view (e.g., Barsalou, 2008;
Glenberg, 1997; Lakoff and Nuifiez, 2001), however, tech-
nology should allow people’s thoughts and actions to
mediate the relationship between real-world phenomena
and formal representations.

CamMotion (Boyd and Rubin, 1996) fosters this rela-
tonship by providing users ways to extract and analyze
data directly from digitized video of objects and events.
HyperGami (Eisenberg and Eisenberg, 1998, 1999; Eisen-
berg and Nishioka 1997) lets students create customized
3-D polyhedral forms on the computer screen that are
printed as flat, colorful patterns, but that fold to became
tangible models, such as penguins.

Recent advances in new and powerful output devices
permit students to design (on the computer) and then
print objects in sturdy materials such as wood, acrylic,
foam core, wax, and plaster. Advances in materials science
and developments in plastics, liquid crystals, and optical
fibers also invite new ways of using the hands and body to
engage in mathematics, and in so doing, recast the very
notion of educational technology (Eisenberg er 4/, 2005).

This greatly expands the range of mathematical objects
and techniques available to students. For example, laser
printing can be used to make sliceforms that can be slotted
together to form mathematical objects in 3-D that are
both educational and esthetic (Figure 6(a)). The
approach can be used to support proof by construction.
It can also be used on fabric, where mathematical patterns
can inspire fashion. Laser printing is also instrumental
to the MachineShop program (Blauvelt and Eisenberg,
2001, 2006), which directs a laser-cutting device to make
toothed gears, cams, and levers from wood based on
custom-designed mathematical functions that can then
be assembled to make devices, including toys and models
of dynamic systems (see Figure 6(b) and 6(c)).

These approaches to tangible mathematics — and there
are many more to be reviewed — recall a time when
mathematics and art were closer than they are today for
many students. Mathematically inspired crafts also en-
courage a culture of display (Eisenberg er al, 2005).
Thus, mathematical craftwork takes the idea of grounding
the meaning of mathematics one large step forward, by
inviting students to personalize mathematics and enrich
our immediate surroundings with beautiful and interest-
ing mathematical entities that we design and construct.
Combined with the aims that focus on developing stu-
dents’ spatial reasoning and conceptual and procedural
advancement, this is a valuable reminder of what math
education can become.
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Figure 6 (a) A sliceform ellipsoid constructed from a set of slotted wooden pieces. (b) A custom-designed cam from MachineShop.
(c) Some mechanical automata designed and built by students. Adapted from Figure 3 of Eisenberg, M., Eisenberg, A., Blauvelt, G.,
Hendrix, S., Buechley, L., and Elumeze, N. (2005). Mathematical crafts for children: Beyond scissors and glue. Proceedings of

Art+Math=X Conference, pp. 61-65, CO: Boulder.

Challenges Facing Technology Supports
for Acquiring Mathematics

New views of learning and behavior are contributing to
new forms of technology as the interactions between
technological tools and tool users are reconceptualized.
While Zasper Woodbury series, Cognitive Tutors, and Sim-
Calc are notable exceptions, the empirical research base
for many of the technological innovations reviewed is still
thin. Most evaluations could benefit from qualitative
investigations that document implementation fidelity
and the learning process alongside more conventional
quantitative studies of assessment performance.
Technology enacts a ratchet effect (Tomasello, 1999)
on mathematics education, with intellectual advance-
ments supporting the democratization of mathematics
for all learners (Kaput, 1994). Yet new technologies intro-
duce new costs to education. First is the cost of the
technologies themselves, as well as adequate technical
support. Second, new technology calls for new forms of
teacher support that must be ongoing and systemic to the
educational institutions and it must provide direct con-
nections between the technology and the mathematical

content that it is designed to support. To adequately meet
the potentials these new opportunities afford, teachers
need additional training. Third, the new technologies
present entirely new areas of mathematics (e.g., dynamic
systems and inferential statistics) and are shifting prior
topics into earlier grade levels (e.g., algebra and calculus).
Finally, assessments of student learning, as well as the
curriculum and professional standards will need to be
revised to keep pace, or fall seriously out of date.

See also: Classroom uses of Technology to Manage
Instruction.
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http://www.I3d.cs.colorado.edu — Craft technology.
http://www.kaputcenter.umassd.edu — The James J. Kaput Center for
Research and Innovation in Mathematics Education.
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