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The role of reasoning and proof in mathematics is undeniably crucial, and yet research in 
mathematics education has repeatedly indicated that students struggle with proof production. 
Our research shows that proof activities can be illuminated by considering action and gesture as 
a modality for crucial aspects of mathematical communication. We share two examples that 
highlight the importance of gesture and action in supporting students’ mathematical proof 
production. We conclude by discussing the implications of our work for already existing schemes 
for classifying proof.  
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Research in mathematics education has consistently shown that students, as well as pre-

service and in-service teachers, struggle with constructing, interpreting, and evaluating proofs 
(Knuth, 2002; Healy & Hoyles, 2000; Chazan, 1993). Such research is deeply concerning, as 
proof is “an essential component of doing, communicating, and recording mathematics” 
(Schoenfeld, 1994, p. 74). Yet these results are perhaps unsurprising, as only recently has 
mathematics education begun to emphasize proof in the curriculum (e.g., National Council of 
Teachers of Mathematics [NCTM], 1989, 2000). NCTM recommends that proof and reasoning 
be taught from prekindergarten to 12th grade. The reasoning and proof Process Standards most 
relevant to our research include: the investigation of mathematical conjectures; the development 
and evaluation of mathematical arguments and proofs; and the use of “various types of reasoning 
and methods of proof” (NCTM, 2000, p. 322). Building upon NCTM’s work, the new but 
widely-adopted Common Core State Standards for Mathematics identify constructing viable 
arguments and critiquing the reasoning of others as critical skills for students to learn across 
grade levels, while the standards for high school geometry specifically call for students to 
construct mathematical proofs of theorems (Common Core State Standards Initiative, 2010). 

As the field continues to struggle with teaching proof, it is worth considering alternative 
forms of support for students. Healy and Hoyles (2000) found that correct proof production is 
easier for students when they can engage in building narrative forms, rather than algebraic ones. 
Various authors have examined the role of digital geometry environments in supporting the 
development of proof (Chazan, 1993; Hoyles & Jones, 1998). Here, we take a novel approach by 
looking to theories of embodied cognition, examining alternative methods of supporting proof 
production and communication through the modalities of action and gesture. We place ourselves 
on PME-NA’s learning continuum, as we are using an innovative method of examining student 



	  

learning during proof production. This paper makes no claims as to the newness of action and 
gesture in supporting mathematical learning and communication—in fact, it is the ubiquitous yet 
overlooked role of action and gesture to which we wish to draw attention. Consequently, we 
contribute a new lens in order to reveal heretofore invisible proofs. 

In this paper, we begin by briefly defining the practice of mathematical proof, and then 
explore relevant research on embodied cognition, action, simulated action, and gesture. We then 
share two excerpts of students using gesture and action to support proof from a recent study we 
conducted. In these excerpts and others, we find that the practice of proof is greatly enriched by 
considering both verbal and physical modalities. Finally, we share our future plans for this 
research, and examine the potential implications for teaching proof.  
 

Theoretical Framework 
Mathematical Proof and Justification 

We conceptualize mathematical justification using Harel and Sowder’s (1998) proof scheme, 
and our intended “mode of thought” (e.g., the modality of mathematical observation and 
reflection; p. 240) is body-based action and gesture. Harel and Sowder define proving as “the 
process employed by an individual to remove or create doubts about the truth of an observation” 
(p. 241). They further identify two subprocesses of proving: ascertaining (the proof activities an 
individual engages in when attempting to convince themselves); and persuading (the proof 
activities an individual engages in when attempting to convince others). As proof occurs in a 
social context where the argument must be communicated to an audience effectively and 
convincingly, we argue that each subprocess is essential when considering the learning of proof.  

Harel and Sowder’s (1998) proof scheme includes multiple categories and levels for 
classifying mathematical proofs. For our purposes, we focus on the analytical>transformational 
proof scheme, which involves “operations on objects and anticipations of the operations’ results” 
(p. 259). In particular, when students are utilizing the analytical>transformational proof scheme, 
they are transforming a mathematical object or concept by varying some relationships 
purposefully in anticipation of certain results, observing the resulting changes, and deducing 
mathematical properties accordingly. Although this is a powerful and effective method of 
proving for students to learn, until now little research has examined how gesture and body-based 
action can play a role in supporting these dynamic transformations.  
Gesture and Action 

Theories of embodied cognition suggest that cognitive processes are not algorithms acting 
upon amodal mental systems, but rather they are bound up with the action and perception 
systems of the thinker (Barsalou, 1999; Barsalou, 2008; Glenberg & Robertson, 2000; Wilson, 
2002). These action and perception systems, in turn, are not only guided by cognitive processes, 
but they also constitute and transform those processes. In other words, gestures and actions are 
not simply byproducts of cognition—they are coupled to cognitive processes (Shapiro, 2011) and 
they influence cognition. For example, gesture accompanied by speech may elaborate upon the 
thoughts possessed by the speaker (contributing additional information not contained by the 
speech acts), as well as feed back into processes that transform the speaker’s cognition (Alibali 
& Kita, 2010; Goldin-Meadow & Beilock, 2010; Nathan & Johnson, 2012).  

Gestures are a particular form of action that represent the world, rather than acting upon the 
world directly (Goldin-Meadow & Beilock, 2010). Furthermore, gestures are more than mere 
movements; as McNeill (1992) says, they “can never be fully explained in purely kinesthetic 
terms” (p. 105). Gesture is tied tightly to action, in our view, following Hostetter and Alibali’s 



	  

(2008) conceptualization of gestures as “manifestations of the simulated actions and perceptions 
that underlie thinking” (p. 508). Gestures are symbols that serve both to communicate and to 
affect the gesturer’s cognition. Whether participants’ gestures are produced as communicative or 
cognitive acts may appear to be a crucial distinction that we are in need of making. However, 
Hostetter and Alibali (2008) determine such a distinction to be somewhat false:  

…gestures are a natural by-product of the cognitive processes that underlie speaking, and 
it is difficult to consider the two separately because both are expressions of the same 
simulation…. [G]esture and speech may express different aspects of that simulation…but 
they derive from a single simulation; thus, they are part of the same system. (p. 508)  

Consequently, we use verbal and gestural data side by side in our analyses for the purpose of 
triangulating on participants’ cognition. By considering multiple modalities in this fashion, we 
are able to gain access to elements of ascertaining (convincing oneself) and persuading 
(convincing others) proof activities that would otherwise remain hidden in plain sight.  
Gesture, Action, and Mathematics 

Learners’ gestures and actions have been found to support mathematics learning in many 
previous studies (e.g., Glenberg et al., 2007; Nathan, Kintsch, & Young, 1992; Alibali & Nathan, 
2012; Alibali & Goldin-Meadow, 1993), and are “involved not only in processing old ideas, but 
also in creating new ones” (Goldin-Meadow, Cook, & Mitchell, 2009, p. 271). In our research, 
we build upon this prior work while venturing into new territory: the role of action and gesture in 
supporting proof production. In the following section, we discuss gesture and mathematics in a 
general fashion, and draw out some threads that are particularly relevant to the domain of proof.  

In some cases, gesture or body-based action may allow students to manipulate conceptual 
objects in a fashion similar to dynamic geometry software. In these systems, students can build 
objects that maintain invariant relationships even as the object is manipulated and acted upon 
(e.g., when a single vertex is moved on a triangle, the connected sides will stretch to meet the 
new location of the vertex, always keeping a triangular shape) (Hoyles & Jones, 1998). These 
environments can support students in generating and verifying conjectures about the 
relationships contained within these objects. Similarly, the real-world context within which 
action and gesture are produced can give feedback about the legitimacy of the constructs evoked 
by the mathematical conjectures. Whereas with paper and pen impossible triangles can be 
constructed (e.g., a triangle where the hypotenuse is labeled as longer than the sum of the 
remaining two sides; see Table 1 for the relevant task), using one’s body to construct the triangle 
can constrain a student from expressing such an impossibility.  

One of the features of dynamic geometry software is that it affords the possibility of testing a 
large number of examples while maintaining the relevant invariant features. Gesture and 
simulated action may have a similar affordance. Hostetter and Alibali (2008) note that, “Because 
mental images retain the spatial, physical, and kinesthetic properties of the events they represent, 
they are dependent on the same relationships between perceptual and motor processes that are 
involved in interacting with physical objects in the environment” (p. 499). In other words, mental 
simulation, as evidenced through action and gesture, also allows such testing. We hypothesize 
that action and gesture can influence cognition in a way that is soundly based upon the physical 
experience of space within the world. In this way, action and gesture may support 
analytical>transformational proof production.  

Given the potential influence of action, gesture, and simulated action upon cognition, we 
designed an experiment to examine the role of action and gesture upon mathematical proof 



	  

production and communication. In the following section, we share our methodology and 
mathematical conjecture tasks.  

Methods 
The data reported in this paper were drawn from a larger study of the role of action and 

gesture in proof. Participants were 36 students (22 F; 14 M) at a large midwestern university 
enrolled in a psychology course, and they received partial class credit for participating. The 
average age of our participants was 20 years old (15 freshmen; 9 sophomores; 7 juniors; 4 
seniors; 1 part-time student).  

In one-on-one interviews, participants were asked to justify a variety of mathematical 
theorems from number theory and geometry; here we report on the two conjectures shown in 
Table 1. Our research question was: How are gestures and actions used in the ascertaining and 
persuading phases of proof? In the larger study (not reported here), we encouraged participants 
to produce particular sorts of gestures for some conjectures. However the analysis here focuses 
only on cases in which students spontaneously gestured and used action when proving (i.e., their 
behavior was not manipulated).  

Table 1: Conjectures 
Conjecture 1: Gears Conjecture 2: Triangle Inequality 

An unknown number of gears are connected in a chain. 
You know which direction the first gear turns. How can 
you determine what direction the last gear will turn? 
Provide a justification for your answer. 

Mary came up with the following conjecture:“For 
any triangle, the sum of the lengths of any two sides 
must be greater than the length of the remaining 
side.” Provide a conceptual justification as to why 
Mary’s conjecture is true or false.  

 
We intentionally created a context in which participants would be likely to produce gestures 

while reasoning mathematically by setting up the discourse context (Hostetter & Alibali, 2008) 
in various ways. First, we emphasized the talk-aloud nature of the experiment to all of our 
participants, and we verbally prompted them to reason out loud if they fell silent. For some, we 
removed pen and paper; and for others we also removed the chair so that they (and the 
interviewer) had to remain standing. Furthermore, by designing the protocol to give no feedback 
to the participants, we emphasized innovative proof instead of imitative, and shifted the mode of 
thought to mental and physical by lessening the availability of pen and paper. 

Each participant was videotaped, with the camera(s) capturing both small and large gestures. 
The data were analyzed in Transana, a qualitative analysis software program, and team members 
selected various gesture segments with the units of analysis based on each mathematical 
conjecture. In particular, we used multimodal analysis techniques (Alibali & Nathan, 2012; 
McNeill, 1992), and coded how each student used action and gesture during the ascertaining and 
persuading phases of their proof (Harel & Sowder, 1998).  
 

Results 
Our first example shows how simulated action (manifested through gesture) can illuminate 

the ascertaining phase of proof. The second example demonstrates the role of paired gesture and 
speech during the persuading phase. Our presentation we will provide additional examples. 
Simulated Action Illuminates Ascertaining 

To illustrate the illumination of proof by simulated action, we share an excerpt from the 
Gears conjecture (Table 1), as the participant leverages her body as a tool for simulating the 
actions of the gears and identifying parity (shown in Figure 1). The excerpt contains both 



	  

ascertaining and persuading phases of the proof, and is annotated as such. 
	  

 

Figure 1: Simulated Action Illuminates Ascertaining 
	  

For each idea the participant expresses verbally in the ascertaining phase, she also produces 
gestures that physically simulate the motions of the gears. By using her body, she first 
inductively establishes the conjecture that “the second gear must be turning in the opposite 
direction” (Line 1) and convinces herself that this applies in the prototypical case. She then treats 
this claim as her premise and deductively draws appropriate conclusions for how it must apply to 
odd and even length chains of gears. Her eyes remain focused on her hands, as she uses her body 
to understand why the conjecture is true. During the persuading phase (Line 5), gesture is also 
critical; as she speaks, her gestural simulations show the audience how and why her statement is 
true. However, a more powerful example of how action supports and constitutes mathematical 
proof during the persuading phase is given next. 



	  

Paired Gesture and Speech Persuading 
To illustrate the pairing of gesture and speech to support persuading in embodied proof, we 

examine an excerpt that occurs after a participant has solved the Triangle Inequality conjecture 
(Table 1) and has shifted into the persuading phase of the proof (Figure 2). The verbal element of 
the proof provides a specific example, as simultaneously the gestural components communicate 
the generalizability of the participant’s proof.  

 

 
Figure 2: Paired Gesture and Speech Persuading 

 
In Figure 2, the verbal and gestural components are woven together to provide a complete 

proof. Attending only to the verbal proof elements would result in an incomplete empirical 
justification, as the participant would appear to be basing his entire argument upon testing a 
single (and incompletely described) triangle. However, in considering the gestures, we gain 
insight into the participant’s full argument that goes beyond empirical, into analytical and even 
axiomatic proof schemes -- the realms of a mathematically legitimate proof. It is through 



	  

multimodal communication of gesture paired with speech that the student presents the most 
compelling and persuasive case for supporting his conjecture.  
 

Discussion 
These two examples highlight the multi-modal nature of proof, and show that understanding 

proof production can require attending to more than just students’ verbal and written work. In 
Figure 1, the participant’s embodied account reveals how she relies on an early instance to 
establish a conjecture about gears that is sufficiently general to support a deductive proof 
scheme. In Figure 2, the persuading phase offered might seem superficial (overly empirical) as a 
strictly verbal account. However, the participant’s accompanying gestures reveal a corroborative 
proof scheme that is analytical in the sense that it relies, not on the particular lengths or topology, 
but their structural role. At the same time, it is transformational in how it utilizes actions to 
support the goal of portraying the impossibility of any triangle that rejects the premises.  

These are not rare examples from our data, but rather they are characteristic of many other 
proof schemes we observed. Alongside our exploration of the different modalities of proof, we 
are examining various ways that gesture and action can support mathematical learning and, 
consequently, proof production. Although the data reported here come from proofs that 
participants spontaneously generated, interventions that manipulate action and gesture show 
promise for supporting analytical>transformational proof production (Walkington et al., 2012). 
As many students have difficulty producing traditional deductive proofs, preferring inductive 
empirical reasoning (Chazan, 1993; Healy & Hoyles, 2000; Hoyles & Healy, 1999, 2007), 
gestures and actions may provide an accessible bridge between the two. The potential of simple 
physical movements to support mathematical understanding is vast—and a crucial new area of 
study, given the importance of proof to the mathematical community and the general difficulty of 
engaging students in proof practices. 
 

Conclusions 
The implications of this emerging research on embodied cognition are profound for 

mathematics education in general, and the teaching of mathematical proof in particular. Action 
and gesture provide another modality for mathematics learning and expression, which may 
particularly support those students who struggle with the abstract notation traditionally used with 
proof. Extending the examination of proof production into gesture and action allows us to 
conceptualize a more complete model of cognition (Shapiro, 2011), and consequently allows us 
to design new activities that more coherently account for different strategies of proof production. 

Our research provides a starting point for those examining mathematical proof through the 
modalities of action and gesture, and we continue to research the impact of action and gesture 
upon proof production. This work raises an important question: How does an embodied account 
influence earlier proof frameworks (e.g., Harel & Sowder, 1998; Healy & Hoyles, 2000)? Our 
next step is to answer exactly that question, and provide a multidimensional framework that 
incorporates a proof scheme with a spectrum of gesture, action, and proof.  
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